
Natural
Frame Gallery

Version 5.1.1 for Windows

This document applies to Natural Version 5.1.1 for Windows and to all subsequent releases. Specifications
contained herein are subject to change and these changes will be reported in subsequent release notes or new
editions.

© June 2002, Software AG
All rights reserved

Software AG and/or all Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

Table of Contents
................. 1Frame Gallery - Overview
................. 1Frame Gallery - Overview
............... 4Frame Gallery - General Information
............... 4Frame Gallery - General Information
................ 4What is the Frame Gallery?
............... 4Benefits Provided by Frame Gallery
.............. 5Application Development Procedure
................. 6Designing the User Interface
................. 6Designing the User Interface
................. 6Standard Layout Settings
.................. 6Push Button Spacing
.................... 7List Boxes
............... 7Selection Boxes and Combo Boxes
.................... 7Menu Bars
............... 8Frame Gallery Naming Conventions
............... 8Frame Gallery Naming Conventions
............... 8Reserved Identifiers for Key Values
................ 8Conventions for Message Text
.................. 9System Messages
................. 9Application Messages
.................. 9Natural Object Names
.................... 9Structure
............... 9Business Area Abbreviation
................ 10Object Type Abbreviation
................. 11Function Identification
................. 11Natural Language Code
................. 11Natural Object Type
................... 13Field Names
................ 14Frame Gallery Object Names
.................... 14General
............... 14Frame Gallery Function Names
............... 15Designing the Application Structure
............... 15Designing the Application Structure
........... 15Familiarizing Yourself with the Application Frames
.................. 15The Business Function
............... 16Identifying a Business Function
................. 16Structuring a Function
.................... 17Selecting Frames
................... 17Selecting Frames
................... 17Dialog Structure
................ 18Entry-Level Dialog - Level 1
............... 19Subordinate Dialogs - Level 2
................. 20Modal Dialogs - Level 3
.................. 20Permissible Calls
............. 21Examples for Combining Production Frames
.................. 21Basic Combinations
.................... 21Variations
................ 24Using Tables in Frame Gallery
................ 24Using Tables in Frame Gallery
.................... 24Using Tables
................ 25Criteria for Defining a Table
.............. 25Maintenance Functions for Tables
................. 25Access to Table Data

iCopyright © Software AG 2002

Table of ContentsFrame Gallery - Overview

................. 25Selection Help for Table Data

................. 26Creating Help for Table Data

............... 27Creating an Access Module for a Table

............... 28Testing Further Database Operations

............. 29Creating a User Exit for Single-object Processing

.................. 29Invoking the User Exit

.................. 29Creating the User Exit

................ 31Generating Functions in Frame Gallery

................ 31Generating Functions in Frame Gallery

............... 31Criteria for Using Frame Gallery Frames

.................. 31Accessing the Frame Gallery

.................. 32Creating an Object View

.................... 35Generating Dialogs

................ 38Customizing a Generated Application

................ 38Customizing a Generated Application

.................. 38Customizable Components

..................... 39Commands

................ 39Frame Logic Control Variables

.................. 39Reusable Components

.................... 39Skeleton Objects

.................... 40Generated Code

.................... 40Suggested Code

.............. 40Naming Conventions in the Suggested Code

.................. 41Skeleton Data Definitions

.............. 41Integrating a Dialog in the Application Shell

................. 42Communication Between Dialogs

................. 42Communication Between Dialogs

................... 42The Standard Interface

................. 42Standard Interface Structure

................. 42Local Copy of the Interface

.............. 42Communication Using User-Defined Events

.......... 43Communication using Pre-Defined Event Z_CMD_EXEC

.................... 43Calling a Dialog

................ 43Communication with Subdialogs

................ 44Foreign Key Selection/Active Help

.................. 44Calling Modal Windows

................ 44Commands for Opening a Dialog

.................... 46Application Frames

.................... 46Application Frames

.................... 46Frame Overview

..................... 47Browse Dialog

..................... 47Description

.................. 47Links with Other Dialogs

.................... 47Dialog Layout

................. 48Customizable Components

.................. 49Commands Supported

................... 49Associated Variables

.............. 51Variables for Controlling Frame Behavior

................... 52Deletion Subprogram

..................... 52Description

.................. 52Links with Other Dialogs

.................... 52Dialog Layout

................. 52Customizable Components

................... 52Associated Variables

..................... 53Key Dialog

..................... 53Description

Copyright © Software AG 2002ii

Frame Gallery - OverviewTable of Contents

.................. 53Links with Other Dialogs

.................... 53Dialog Layout

................. 53Customizable Components

................... 54Available Commands

................... 55Associated Variables

.............. 55Variables for Controlling Frame Behavior

.................... 56Maintain Dialog

..................... 56Description

.................. 56Links with Other Dialogs

.................... 56Dialog Layout

................. 57Customizable Components

................... 58Available Commands

................... 60Associated Variables

............... 61Variables Controlling Frame Behavior

................... 62Mass Processing Dialog

..................... 62Description

.................. 62Links with Other Dialogs

.................... 62Dialog Layout

................. 63Customizable Components

................... 64Available Commands

................... 65Associated Variables

.................... 66Modal Window

..................... 66Description

.................. 66Links with Other Dialogs

.................... 66Dialog Layout

................. 66Customizable Components

................... 67Available Commands

.................. 67Additional Information

.................... 68Nonstandard Dialog

..................... 68Description

.................. 68Links with Other Dialogs

.................... 68Dialog Layout

................. 68Customizable Components

................... 69Available Commands

................... 69Associated Variables

.............. 70Variables for Controlling Frame Behavior

.................... 70Locking Data

...................... 71Subdialog

..................... 71Description

.................. 71Links with Other Dialogs

.................... 71Dialog Layout

................. 72Customizable Components

................... 73Available Commands

................... 74Associated Variables

.............. 75Variables for Controlling Frame Behavior

................... 76Background Program

..................... 76Description

.................. 76Links with Other Dialogs

................. 76Customizable Components

................... 76Associated Variables

.................. 77Load Objects Subprogram

..................... 77Description

.................. 77Links with Other Dialogs

................. 77Customizable Components

................... 77Associated Variables

.................. 78Unload Objects Subprogram

iiiCopyright © Software AG 2002

Table of ContentsFrame Gallery - Overview

..................... 78Description

.................. 78Links with Other Dialogs

................. 78Customizable Components

................... 78Associated Variables

.................... 79Standard Commands

.................... 79Standard Commands

.................. 80Local Standard Commands

.................... 80Z_APPLSTART

..................... 80Z_CALL

..................... 80Z_CANCEL

..................... 80Z_CLEAR

..................... 81Z_CLOSE

.................... 81Z_CONFIRM

...................... 81Z_EXIT

..................... 81Z_HELP

.................... 81Z_HELPCNTNT

.................... 81Z_HELPUSE

...................... 81Z_INFO

................... 82Z_INFOBUFFER

.................... 82Z_INITBUFFER

..................... 82Z_NEXT

...................... 82Z_OK

..................... 82Z_OPEN

.................... 82Z_PREVIOUS

..................... 82Z_READ

.................... 82Z_REFRESH

..................... 82Z_SAVE

..................... 83Z_SAVEAS

.................... 83Z_SCRATCH

..................... 83Z_SEARCH

................. 84Internal Standard Commands

................... 84Z_CANCEL_DLG

................... 85Z_CANCEL_KEY

................... 85Z_CANCEL_TMR

.................... 85Z_CONFIRM

.................... 85Z_CONF_DLG

.................... 85Z_DATA_MOD

.................... 85Z_ENTER_SUB

...................... 85Z_EXIT

.................... 85Z_EXIT_TMR

.................... 85Z_GET_DATA

.................... 86Z_GET_FOCUS

................... 86Z_GET_GLOBAL

.................... 86Z_GET_KEY

...................... 86Z_INIT

.................... 86Z_ITEM_ADD

.................... 86Z_ITEM_DEL

.................... 86Z_ITEM_MOD

.................... 86Z_ITEM_NEXT

.................... 87Z_ITEM_PREV

.................... 87Z_KEY_MOD

.................... 87Z_LB_CLICK

.................... 87Z_LB_DOUBLE

..................... 87Z_LB_FILL

.................... 87Z_LB_SELECT

.................... 87Z_LIST_MOD

Copyright © Software AG 2002iv

Frame Gallery - OverviewTable of Contents

.................... 87Z_MOD_DLG

.................... 87Z_NAV_ERR

.................... 88Z_NEW_REC

.................... 88Z_REFRESH

.................... 88Z_RESET_DLG

..................... 88Z_SAVEAS

................... 88Z_SELECT_ALL

................... 88Z_START_NKEY

.................... 88Z_START_KEY

................... 88Z_START_SAVE

.................... 88Z_START_SEL

................... 88Z_START_SOLO

................... 88Tracing a Command

................... 89Customizable Components

................... 89Customizable Components

................... 90Z_ACCESS_DATA

.................. 90Z_ACTIVATE_PREL_REC

................... 90Z_ADD_PREL_REC

................. 90Z_ASSIGN_DEFAULT_KEY

................. 91Z_ASSIGN_INPUT_TO_KEY

.................. 91Z_ASSIGN_SUBDIALOG

.................. 91Z_CHECK_EXISTENCE

................. 92Z_CLEAR_INPUT_FIELDS

................... 92Z_CMD_EXEC_END

.................. 92Z_CMD_EXEC_START

.................... 92Z_CUSTOM_CMD

..................... 92Z_DELETE

.................... 93Z_FILL_DIALOG

..................... 93Z_FILL_ITEM

.................... 93Z_INITIALIZE

................... 93Z_LOCK_RECORD

................. 93Z_NAVIGATE_ON_ERROR

..................... 94Z_PASS_KEY

................... 94Z_PROCESS_ITEM

................... 95Z_READ_PREL_REC

................... 95Z_RECEIVE_DATA

.................... 95Z_RECEIVE_KEY

.................... 95Z_RETURN_KEY

................... 96Z_RETURN_PARMS

................... 96Z_SET_KEY_RANGE

..................... 96Z_SELECT

..................... 96Z_UPDATE

.................... 96Z_UPDATE_ITEM

.................. 97Z_UPDATE_PREL_KEY

.................. 97Z_UPDATE_PREL_REC

..................... 98Z_VALIDATE

.................... 99Reusable Components

.................... 99Reusable Components

.............. 99Communication with the Command Processor

................ 99Subroutine: Z_CMD_DISABLE

................ 100Subroutine: Z_CMD_ENABLE

................ 100Subroutine: Z_CMD_ADD_CTRL

............... 100Subroutine: Z_SEND_CMD_PROC

................. 101Operation: Z_CMD_CHECK

................ 101Operation: Z_CMD_UNCHECK

................. 102Operation: Z_CMD_DELETE

vCopyright © Software AG 2002

Table of ContentsFrame Gallery - Overview

................ 102Operation: Z_CMD_RENAME

................ 103Operation: Z_CMD_REPLACE

............... 103Operation: Z_CMD_DIL_REPLACE

................ 104Communication with the Data Buffer

.............. 104Natural Subroutine: Z_GIVE_GLOBAL

.............. 104Natural Subroutine: Z_UPDATE_GLOBAL

............. 105Starting a Dialog (Application, Function, Browse)

............. 105External Subroutine: Z_INVOKE_FUNCTION

................ 109Processing Status of Dialog Elements

................ 109Natural Subprogram: ZXXCTIGN

................ 109Natural Subprogram: ZXXCTKYN

............... 110Natural Subprogram: ZXXCTMON

............. 110Natural Subroutine: Z_DIALOG_MODIFIED

.................... 110Message Window

............. 111Natural Subroutine: Z_DISPLAY_MESSAGE

.................... 111Date Validation

................ 112Natural Subprogram: ZXXDATEN

.................... 114Numeric Validation

................ 114Natural Subprogram: ZXXNC00N

.................... 116Logical Locking

........... 116Natural Subroutine: Z_CHECK_AND_LOCK_RECORD

.................... 117Background Processes

.................... 117Background Processes

................... 117General Information

............. 118Creating and Maintaining Background Procedures

...................... 118General

................ 118Using Administration Functions

................ 118Types of Background Processing

................. 119Invoking Background Processes

............. 119Calling a Background Program from a Dialog

.................... 119Parameter Usage

............... 120Start Background Program from Dialog

..................... 120Parameters

................ 122Implementing Background Programs

................... 122Passing Parameters

................ 122Logically Locking Data Records

...................... 123Restart

.................... 124Error Handling

................. 124Setting the Processing Status

................ 125Monitoring Program Execution

............ 126Implementing Computer Center Background Processes

.................... 126Error Handling

................ 126Monitoring Program Execution

.................... 127The Command System

................... 127The Command System

............. 127Information Objects and Application Components

..................... 128Data Buffer

.................... 129Access Protection

................... 131Command Processor

..................... 131Menu Items

.................... 131Tool Bar Items

...................... 131Bitmaps

................ 133Command Processing Description

..................... 134List Box Handling

.................... 134List Box Handling

..................... 134Prerequisites

Copyright © Software AG 2002vi

Frame Gallery - OverviewTable of Contents

............... 134Functional Scope of the Frame Modules

.................. 136Additional User Activities

..................... 136Subprogram

..................... 136Copycode

.................... 136Dialog Layout

................... 137Assign Data Areas

................... 137Include Copycode

................ 137Integrate Processing into the Dialog

................. 137Subroutine Z_INITIALIZE

................. 137Subroutine Z_FILL_DIALOG

................ 137Subroutine Z_CUSTOM_CMD

............... 137Subroutine Z_UPDATE_PREC_REC

.................... 138Creating Object Views

................... 138Creating Object Views

...................... 138Concepts

............. 140Natural Objects Associated with an Object View

.................... 140Object View Info

................... 140Object View LDA

.................... 140Constants LDA

................... 140Single Object PDA

................... 140Multiple Object PDA

................. 140Preliminary Copies Copycode

.................. 140Single Object Subprogram

................. 140Multiple Object Subprogram

................ 140Preliminary Copies Subprogram

................ 141Implementing Single-object Access

.................. 141Access Module Structure

................ 142Creation of Consistency Checks

.............. 143Application Program/Object View Interface

.................... 144Error Handling

............... 145Implementing Multiple-Object Access

............. 145Structure of the Multiple-Object Access Module

..................... 145Checking

.............. 146Application Program/Object View Interface

.................... 146Error Handling

.............. 147Implementing Access to Preliminary Copies

.............. 147Copycode for Access to Preliminary Copies

................... 147Activation Module

.................. 148Object View Implementation

................. 148Starting the Implementation

................... 148Object View Creation

.............. 150Object View Creation for Complex Objects

.................. 150Size Problem Solution

................. 152Calling the Access Modules

........... 153Single-object Processing with the Multiple-object Module

........... 153Reading Sequentially using the Multiple-object Module

.................. 154Data Storage and Data Access

.................. 154Data Storage and Data Access

..................... 154Terminology

.................. 155Concepts for Data Storage

.................... 155Time Stamped Data

...................... 155General

.............. 156Time Stamping Concept Recommendation

...................... 160Histories

............ 160Histories in the Original File with Validity Identifier

............ 162Histories in the Original File with Additional Key

viiCopyright © Software AG 2002

Table of ContentsFrame Gallery - Overview

................ 162History Keeping in a Separate File

.................... 165Multiple Control

.................... 165Complex Variant

.................... 165Simple Variant

.................... 167Logical Deleting

..................... 167Data Storage

..................... 167Accesses

.................. 169Multilingual Applications

.................. 169Using a Separate Entity

.............. 170Language-Dependent Fields in the Entity

..................... 172Access Paths

.............. 172Sequential Reading through Nonunique Key

................... 172Upper/Lower Case

.................. 174Structuring Physical Files

................ 175Synchronizing Competing Accesses

...................... 175General

.................. 175Use of Locking Concepts

................. 176Pessimistic Locking Concept

................. 178Optimistic Locking Concept

................ 180Organizational Locking Concept

............... 180Processing Without Locking Concept

..................... 181Transaction Logic

.................... 181Transaction Logic

............. 181Transaction Logic of the Modification Functions

.................. 181Cancelling a Transaction

...................... 182Data Transfer

..................... 182Data Transfer

.................... 182Preliminary Copies

...................... 184Locking Logic

..................... 184Locking Logic

................. 184Lock Marker Check and Write

................... 184Remove Lock Markers

.................. 185Creating an SQL Access Layer

.................. 185Creating an SQL Access Layer

................... 185General Information

............... 185Encapsulating the Database Accesses

.................. 185Creating an Access Layer

................. 185Definition of the Access Layer

............ 185Different Database Accesses with Adabas C and SQL

............... 186Converting a Sequential Read Access

................. 186Converting a Single Access

.................. 187Creating Read Accesses

............. 188Access using a Key with Several Components

.................. 189Inserting a New Record

................. 190Creating SQL Tables and DDMs

................. 190Short Fields with Occurrences

................. 191Long Fields with Occurrences

................ 191Multiple Fields that are Descriptors

................... 192Converting Formats

........... 192Example of an Unsupported Field Format Conversion

.................... 193Defining Tables

................... 195Access to SQL Tables

.................. 195Modifications of a Record

................ 195Modifications of Individual Fields

................... 196Optimizing Accesses

................ 197Application of System Variables

Copyright © Software AG 2002viii

Frame Gallery - OverviewTable of Contents

.................. 198Allocation of Variables

....................... 199User Exits

...................... 199User Exits

................. 199Initializing Access Protection

..................... 199Description

..................... 200Parameters

................ 201Initializing Application-Specific Data

..................... 201Description

..................... 201Parameter

.................. 201Default Start-up Processing

..................... 201Description

..................... 201Parameter

................. 202Business-Specification Descriptions

................. 202Business-Specification Descriptions

..................... 202General Usage

.................... 202Dialog Function

........... 202Object View and Other Modules with Parameter Interface

.................. 202Other Reusable Modules

..................... 203Validations

.................... 203Information Objects

..................... 203Data Elements

................... 203Modification History

.................... 204Descriptive Traits

................... 204Access Protection

..................... 204Comments

..................... 204Definition

..................... 204Description

................... 204Information Objects

.................. 204Input/Output Parameters

................... 205Lower Level Dialogs

.............. 205Pre-definitions - Defaults, Initializations

................... 205Performance Aspect

................... 205Performance Scope

..................... 206Validation

.................... 206Selection Help

..................... 206Set Structure

.................... 206Used Variables

..................... 206Value Area

ixCopyright © Software AG 2002

Table of ContentsFrame Gallery - Overview

Frame Gallery - Overview
The Natural Frame Gallery documentation describes features of Frame Gallery, the Natural development
environment which you will use on a daily basis to create and maintain applications. First, you are introduced to
the landscape of the graphical user interface so that you always find what you need exactly when you need it.
Then you are provided with a task-oriented description of each of the major editors used to create applications:
the program editor, data area editor, map editor, DDM editor, dialog editor, and report writer.

Using the frame gallery, you can select one of a range of standard dialog types (or frames) and generate a simple
dialog and associated data access modules. You can then use the dialog editor to customize the generated dialog
to include application-specific validation and other processing needed for a fully functional application.
Suggested code in the generated dialog assists you with the customization process.

You can use frame gallery to generate prototype dialogs and functions during the product design phase to see
what an application will eventually look like. Frame gallery is primarily used, however, to generate dialogs and
functions during the implementation phase of a software project.

1Copyright © Software AG 2002

Frame Gallery - OverviewFrame Gallery - Overview

Frame Gallery - General Information

Designing the User Interface

Frame Gallery Naming Conventions

Designing the Application Structure

Selecting Frames

Using Tables in Frame Gallery

Generating Functions in Frame Gallery

Customizing a Generated Application

Communication Between Dialogs

Application Frames

Standard Commands

Customizable Components

Reusable Components

Background Processes

The Command System

List Box Handling

Creating Object Views

Data Storage and Data Access

Transaction Logic

Data Transfer

Locking Logic

Creating an SQL Access Layer

User Exits

Business Specification Descriptions

The authors of the Frame Gallery documentation assume that you have a working knowledge of Microsoft
Windows and the terminology used to describe it. If not, consult the Windows documentation for a description of
basic Windows elements, usage and terminology.

Platform-Specific Information

Wherever necessary, platform-specific information in the present documentation is identified by the following
terms:

Copyright © Software AG 20022

Frame Gallery - OverviewFrame Gallery - Overview

Mainframe Refers to the operating systems OS/390, VSE/ESA, VM/CMS and BS2000/OSD, as well as all
TP monitors supported by Natural under these operating systems.

OpenVMS Refers to the OpenVMS operating system.

UNIX Refers to all UNIX systems supported by Natural.

Windows Refers to the following operating systems:

In a Natural development environment:

Microsoft Windows NT
Microsoft Windows 2000

In a Natural run-time environment:

Microsoft Windows 98
Microsoft Windows NT
Microsoft Windows 2000

OS/400 Refers to the OS/400 operating system running on AS/400 and iSeries 400 machines. See the
documentation provided on the Natural for OS/400 product CD-ROM.

3Copyright © Software AG 2002

Frame Gallery - OverviewFrame Gallery - Overview

Frame Gallery - General Information
The following topics are covered below:

What is the Frame Gallery?
Benefits Provided by Frame Gallery
Application Development Procedure

What is the Frame Gallery?
The frame gallery and the application shell are development tools for dialog applications. The main components
of the frame gallery and the application shell are:

Frame gallery
Using the frame gallery, you can select one of a range of standard dialog types (or frames) and generate a
simple dialog and associated data access modules. You can then use the dialog editor to customize the
generated dialog to include application-specific validation and other processing needed for a fully
functional application. Suggested code in the generated dialog assists you with the customization process.
You can use frame gallery to generate prototype dialogs and functions during the product design phase to
see what an application will eventually look like. Frame gallery is primarily used, however, to generate
dialogs and functions during the implementation phase.
Application frames
The frames used in the frame gallery include large amounts of standard internal logic to handle browsing,
command processing, navigation between dialogs and database access. In addition to these frames, further
frame code is available which you can include in your application to handle various special requirements.
Application shell
The application shell provides an application framework which you can use to run dialogs and applications
developed using the frame gallery. It also provides a range of administrative functions used in application
development (for example, application definition) as well as in maintenance (for example, user
maintenance).

Benefits Provided by Frame Gallery
The frame gallery contains all components of a dialog system that are not application-specific. Into this generic
system you add your application-specific functionality.

Using frame gallery provides the following advantages over conventional application development:

Reduced implementation requirements.
Standard functions need not be individually coded for each new application. The developer can concentrate
on the often very complex application-specific requirements.
Reduced testing requirements.
The frames provided have already been tested and are error free.
Easy customization to meet application-specific requirements.
In addition to basic functionality, most frames also contain suggested code which can be used to customize
dialog functions to meet application-specific requirements.
Protection of investment in application-specific code.
Standardized logic and application-specific code are carefully separated in dialogs through the extensive use
of copy code for the standardized frame logic. This means that upgrades to frame logic in future versions of
the Frame Gallery can be easily incorporated by simply restoring existing dialogs.
Easy system orientation and maintenance for developers. Because a similar structure is used for all frames,
it is easier for all developers to become acquainted with any given functional aspect of the application. This

Copyright © Software AG 20024

Frame Gallery - General InformationFrame Gallery - General Information

reduces orientation and maintenance requirements significantly.
Standard application navigation for end users. End users are always provided with the same applications
structure, which increases system acceptance by the user while at the same time reduces user orientation and
training requirements.

Application Development Procedure
The purpose of this section is to describe how an application could be created using application shell and frame
gallery. The information provided is meant to be a guideline and not a complete recipe for application
development.

The procedure below is a general recommendation for creating applications.

1. Write application specification and analyze requirements.
2. Define user interface standards and naming conventions.
3. Define and/or generate database schema and database definition. Decide which entities are to be

implemented as tables.
4. Familiarize yourself with application shell and frame gallery.
5. Structure the application by determining what types of dialogs and functions are necessary.
6. Assign a frame to each function.
7. Define a start application in the application shell and specify a Natural library for the application.
8. Generate prototype dialogs and functions.
9. If not already performed in step 3, define and/or generate database schema and database definition. Decide

which entities are to be implemented as tables.
10. Define tables.
11. Generate production dialogs and functions.
12. Customize the application.
13. Set up icon-based navigation.

5Copyright © Software AG 2002

Application Development ProcedureFrame Gallery - General Information

Designing the User Interface
This section contains recommendations for ergonomic user interface design.

Standard Layout Settings
Push Button Spacing
List Boxes
Selection Boxes and Combo Boxes
Menu Bars

For more specific information, please refer to the SOFTWARE AG GUI Style Guide or other published graphical
user interface style guides.

To ensure that a your application conforms to guidelines of ergonomic design, you should define user interface
standards at the earliest possible phase of the project, prior to application prototyping.

It is best to apply the same standards to all applications so that they have a consistent appearance.

You should design the end-user interface in co-operation with those individuals who will eventually use the
application. The ultimate acceptance of an application is directly related to the degree of co-operation with end
users during the inception as well as during subsequent stages.

Standard Layout Settings
Frames are provided with standard layout settings. For example:

Dialog size for application windows (MDI Frame) 640*480 pixel
Dialog size for maintenance functions (MDI Child) 630*320 pixel
The grid for the Natural editor is set to 5*5 pixels and the attribute Snap into Grid is marked.

Note:
Each dialog element is accessible via an access key ID. This access key ID must be unique within a dialog.
Elements which are used frequently should be assigned the same access key ID for all dialogs.

Push Button Spacing
The following spacing is used between push button areas:

For push buttons positioned along the right margin:
between push buttons of the same group 5 pixel
between groups 15 pixel
between push buttons and dialog border 10 pixel (minimum)

For push buttons positioned along the bottom margin:
between push buttons of the same group 10 pixel
between groups 20 pixel
between push buttons and dialog border 10 pixel (minimum)

Copyright © Software AG 20026

Designing the User InterfaceDesigning the User Interface

List Boxes
For ergonomic reasons, the number of visible entries in a list box is limited to 8.

Selection Boxes and Combo Boxes
The number of visible entries in the list portion of such boxes is limited to 6.

Menu Bars
For dialogs produced using the frame gallery, all menu entries required for a normal dialog are predefined. If
these are not sufficient, the existing menus can be modified.

The following table contains the standard frame gallery menus together with the frame gallery internal variable
names and short description.

Object (Z_OBJECT) All common menu entries required for graphical user interface applications, plus all
actions which result in database access. If the space available is not sufficient your
special requirements, an additional menu can be created. The name of the additional
menu could be COMMAND.

Edit (Z_EDIT) Menu for implementing all actions related to editing (processing) of the object which
has just been read. For example, copy or paste functions.

View (Z_VIEW) Menu for all zoom functions. Subdialogs and modal windows for a main dialog can
be assigned here.

Selection (Z_SELECT) Menu used for navigation within an application.

Options (Z_OPTIONS) Menu for maintaining profiles. (To be available with the next release.)

Window (Z_WINDOW) Standard menu for graphical user interface applications which contains entries with
which the current open dialog can be arranged on the screen, and also to indicate
which dialog must have the focus.

Help (Z_HELP) Standard menu for graphical user interface applications which provides various types
of help information.

7Copyright © Software AG 2002

List BoxesDesigning the User Interface

Frame Gallery Naming Conventions
This section provides information on naming conventions within frame gallery.

Reserved Identifiers for Key Values
Conventions for Message Text
Natural Object Names
Frame Gallery Object Names

Reserved Identifiers for Key Values
To distinguish frame gallery objects from those which are created during the development of an application,
certain prefixes and value ranges are reserved for frame gallery objects.

The identifiers listed in the table below must not be used for any of the following:

Names of objects of the documentation tool being used;
Names of all Natural modules;
Designation of variables and database fields;
Key IDs for:

applications;
commands;
object types;
functions;
function groups;
background procedures;
dialog types;
symbol bars.

The reserved identifiers are:

Identifier Object

Z* Natural module names

GZ_* Global data contained in global data areas

LZ_* Local data contained in local data areas

PZ_* Parameter data in parameter data areas

#Z Local data

Z_* Applications, commands, object types, function groups, background procedures, dialog types, tool
bars

Z* Functions

Conventions for Message Text
The application shell requires message texts. These texts are partly referenced from the frames. The following
numbering scheme is used:

Copyright © Software AG 20028

Frame Gallery Naming ConventionsFrame Gallery Naming Conventions

0001-0999: system messages
1000-9999: application messages

The application shell messages are in the file msg1.dat (English) and msg2.dat (German) respectively. These
files serve as the basis for the generation of a Natural message file.

System Messages

This message area contains

General error messages such as "data record not found";
Error messages for the application shell.

You should not make additional entries in this message area.

Application Messages

This message area is reserved for messages used by applications implemented using the application shell.

It is recommended to classify messages for various applications by assigning specific ranges to each application.
This avoids possible conflicts in message number usage among applications.

Natural Object Names
This section describes the naming conventions for Natural objects as well as the designation of program
variables and database fields. These naming conventions are general recommendations for the designation of
individual objects.

Structure

Natural objects which do not contain any language-dependent components must be named according to the
following structure:

BOOXXXXN

where B is the business area abbreviation (for example, P for Purchasing), OO is the object type abbreviation,
XXXX is the function identifier and N is the Natural object type.

Natural objects which are language-dependent must be named according to the following structure:

BOOXXXLN

where B is the business area abbreviation, OO is the object type abbreviation, XXX is the function identifier, L is
the language code and N is the Natural object type.

Business Area Abbreviation

The abbreviation of the business area to which the function belongs. Such abbreviations must be set
organization-wide to ensure uniqueness and consistency.

Examples:

9Copyright © Software AG 2002

Natural Object NamesFrame Gallery Naming Conventions

P Purchasing

S Sales

I Inventory

Object Type Abbreviation

The abbreviation of the object type to be processed.

If the Natural module is used together with a specific information object, the abbreviation of the information
object must be as descriptive as possible.

Example:

CU for Customer

If the Natural module is used for a specific central task, the first position of the object type abbreviation must
contain the character (X) and the second position must contain an abbreviation of the processing task.

Example:

XD for Dating

If the Natural module is of primary importance to the entire application and can be used throughout the
application, the object type abbreviation must be set to XX.

Copyright © Software AG 200210

Frame Gallery Naming ConventionsObject Type Abbreviation

Function Identification

An abbreviation which identifies the function uniquely. If the module is a central, frequently reused module, it is
important to use an abbreviation which is as descriptive as possible.

If the module is used only for a specific information object or processing task, the following guidelines can be
used:

Positions 1 and 2Type of Processing

AM Multiple record access module

AS Single record access module

BR Listing of objects for an object type (browse dialog)

DD Delete (deletion subprogram)

KD Key ID for dialog (Key dialog)

MD Maintain processing function (maintain dialog)

MR Multiple records (mass processing dialog)

MW Modal window processing (modal window)

SU Lower level window (subdialog)

NS Individual dialog (nonstandard dialog)

Positions 3 (and possibly 4) are used as additional numeric qualifiers (01-99) in the event that there is more than
one module per type of processing. Otherwise, these positions may be set to zero.

Natural Language Code

The code of the language belonging to the interface of the Natural module.

If the system is multilingual, you must specify the special character which is to replace the current language code
at runtime.

Natural Object Type

The Natural object type. Examples are shown below.

A = parameter
C = copycode
D = dialog
G = global data area
L = local data area
N = subprogram
P = program
S = external subroutine
T = text

11Copyright © Software AG 2002

Function IdentificationFrame Gallery Naming Conventions

Please note the following difference in dialog designations between Natural and frame gallery:

In Natural, a dialog is designated by Natural object type ’3’.
In frame gallery, a dialog is designated by ’D’.

Examples:

TXXINF1D

T Business area: T for Travel Cost Reimbursement

XX Internal, reusable module

INF Information display

1 Language code: 1 for English

D Natural object type: D for dialog

PCUMD02D

P Business area: P for Purchasing

CU Object type abbreviation: CU for Customer

MD Function abbreviation: MD for main dialog

0 Indicates that this is the only such module for this area

2 Language code: 2 for German

D Natural object type: D for dialog

SORAS00N

P Business area: S for Sales

OR Object type abbreviation: OR for Order

AS Function abbreviation: AS for access single record

0 Indicates that this is the only such module for this area

0 Language code: 0 indicates no language dependency

N Natural object type: N for subprogram

Copyright © Software AG 200212

Frame Gallery Naming ConventionsNatural Object Type

Field Names

Variable Names

The general structure used for variable names is as follows:

prefix_ BOO _name _suffix

prefix G_ global variable

 L_ local variable defined in an local data area

 P_ parameter data defined in a parameter data area

 # user-defined local variables

B Business area in which variable is used. May be omitted if the variable is not to be associated with a
specific business area.

OO Object type for which variable is used. May be omitted if the variable is not to be associated with a
specific information object.

name The name of the variable. The name must be as descriptive as possible.

suffix Further classification of the variable.
Examples:
_CV Control variable
_FROM Variable used for starting value
_THRU Variable used for ending value
_A20 Variable used for field format

Handle Names

In event-driven applications, handle names are used to describe dialog elements. In order to be able to provide a
clearer description of a business element used within a dialog, the following naming structure is recommended:

prefix _ control-abbreviation _BOO _ name

prefix Variable type. In that handles are defined locally in a dialog, the character # is used
here. Frame gallery-specific handles are identified with the characters #Z.

control-abbreviation Natural-defined abbreviation for a control variable.

Examples:
BM - bitmap
PB - push button
IF - input field

B Business area in which variable is used.

OO Object type for which variable is used.

name Descriptive name of the handle.

13Copyright © Software AG 2002

Field NamesFrame Gallery Naming Conventions

Frame Gallery Object Names
These naming conventions are general recommendations for the designation of individual objects.

General

The key ID for the application shell administration system is generally preceded with the default abbreviation Z.
Therefore, user data records must not begin with Z. For further information, see Reserved Identifiers for Key
Values.

Frame Gallery Function Names

In order to clearly associate a function with an application via the function key ID, the business area and object
type abbreviations must precede the key ID.

Examples:

ZUS_MNT

Z Business area abbreviation reserved for frame gallery

US Object type abbreviation (user maintenance)

MNT Key ID for maintenance function

SCU_DIS

S Business area abbreviation (S for Sales)

CU Object type abbreviation (CU for Customer)

DISP Key ID for function which displays a data record

Copyright © Software AG 200214

Frame Gallery Naming ConventionsFrame Gallery Object Names

Designing the Application Structure
The design of dialog functions is one of the most important activities at the beginning of a design phase. It is
separated into the following tasks:

Definition of the application structure.
Separation of the system into business functions.
Definition of the structure of the individually callable components.
Decision on which frames will be used for which business functions.

The following topics are covered below:

Familiarizing Yourself with the Application Frames
The Business Function

Familiarizing Yourself with the Application Frames
Before designing the application structure, you should make sure you are familiar with the application frames.
The selected frame determines the basic functionality of a function or a processing step. Frame selection is
therefore a very important step in the transition between the functional design phase and implementation.

In order to select frames, you need:

an overall understanding of which frames are available;
an understanding of the possible combinations of program frames which can be used when; creating a
function.
to identify reusable components (this reduces the effort involved in frame selection);
to consider the specific functional requirements for each function.

The Business Function
A business function is the smallest individually callable application unit. It can be an administrative function for
maintaining data, an action such as making a reservation, or an enquiry. Depending on requirements, it could
consist of a single dialog or a main dialog and a number of subordinate dialogs.

Each dialog can be supported by additional functionality such as background processing or a sequence of further
lower level windows (e.g. selection help).

Identifying a Business Function
Structuring a Function

15Copyright © Software AG 2002

Designing the Application StructureDesigning the Application Structure

Identifying a Business Function

A business function acts on a group of related data, subsequently referred to as an object. An object can contain
fields from various physical data sources.

A business function can include several actions for an object (for example, modify or copy), or be limited to one
action (for example, delete).

Structuring a Function

Functions can be broken down into individual dialogs. You select the frame for each dialog to be used depending
on the functionality required.

You should consider the following guidelines when creating functions:

Use as few dialogs as possible.
Place logically related fields on the same window.
Place mandatory fields on the maintain dialog whenever possible. If there is insufficient space, or if no
logical structure is evident, then place the mandatory fields within a subordinate dialog which you indicate
as important. For example, via a push button.
Determine if a function contains lower level dialogs that are shareable with other functions. Define such
common functionality as separate reusable dialogs.
Make such reusable modules available to the project team as soon as possible. Use subprograms for related
business functionality which is more of a business nature. Use subordinate dialogs or modal windows for
related business functionality which must be invoked by the end user as a dialog.
Check for functionality which can be optionally invoked by the end user, and which are not required for the
normal completion of the function. Define such functionality as subordinate dialogs or as modal windows.
Check the necessity of selection help for the individual fields. Selection help for key fields should always be
available.
Check if confirmation or information windows are to be used.
Determine the necessary frame functionality which is required.

Build the call mechanisms for lower level dialogs in a way which is logical when seen from the business
perspective (example, push buttons in prioritized sequence).

Copyright © Software AG 200216

Designing the Application StructureIdentifying a Business Function

Selecting Frames
The following guidelines are divided into those applicable for entry-level dialogs and those applicable for two
lower level subordinate dialogs.

1. First select the appropriate entry-level dialog.
2. Next select the frames for the logically subordinate modules, such as subordinate dialogs, modal windows

and object selection.
3. Select a frame for each window.
4. If you find alternatives, select those which appear to be the most flexible for the function.

The following topics are covered below:

Dialog Structure
Examples for Combining Production Frames

Dialog Structure
Each business function contains exactly one entry-level dialog from which various subordinate dialogs can be
invoked. Entry-level dialogs as well as subordinate dialogs can call modal windows or key dialogs. A modal
window can call additional modal windows or key dialogs. The following graphics shows the tree structure of a
function with levels.

The following topics are covered below:

Entry-Level Dialog - Level 1
Subordinate Dialogs - Level 2
Modal Dialogs - Level 3
Permissible Calls

17Copyright © Software AG 2002

Selecting FramesSelecting Frames

Entry-Level Dialog - Level 1

Entry level dialogs represent the first level of a function. They can be used without restriction and also
stand-alone. The following frames can be used.

Display, modify, add, and operative functions

Frame Maintain dialog

Call Direct

Further calls to Subordinate dialogs, key dialogs, modal windows

Special characteristics Works with preliminary data copies

Browse, Overviews

Frame Browse dialog

Call Direct

Further calls to Modal windows, mass processing dialog, key dialogs, deletion subprogram, maintain dialog

Comment: A business function can be called by selecting an action in a browse dialog

Mass Processing

Frame Mass processing dialog

Call Direct

Further calls to Modal windows, key dialogs

Comment Recommended in conjunction with a browse dialog

Delete Confirmation

Frame: Deletion

Call Direct

Further calls to None

Comment Creates a subprogram which is activated directly from the command system

Nonstandard Dialog

Frame Nonstandard dialog

Call Direct

Further calls to Modal windows, key dialogs

Copyright © Software AG 200218

Selecting FramesEntry-Level Dialog - Level 1

Subordinate Dialogs - Level 2

Key Dialog

Frame Key dialog

Call From maintain dialog, browse dialog

Further calls to Modal window

Display, modify, and new functions, and other actions

Frame Subdialog

Call From maintain dialog

Further calls to Key dialogs, modal windows

Special characteristics Works with preliminary copies

Display, modify, new, operative, and browse functions without access to preliminary data

Frame Modal window

Call From maintain dialog, browse dialog, mass processing dialog

Further calls to Key dialogs, modal windows

Special characteristics Works with preliminary copies

Mass Processing

Frame Mass processing dialog

Call From browse dialog

Further calls to Key dialogs, modal windows

19Copyright © Software AG 2002

Subordinate Dialogs - Level 2Selecting Frames

Modal Dialogs - Level 3

Display, modify, new, and operative functions:

Frame Modal window

Call From mass processing dialog, key dialog

Further calls to Key dialogs, modal windows

Key Dialog

Frame Key dialog

Call From subdialog, modal window, key dialog, mass processing dialog

Further calls to Modal window

Special
characteristics

Generated maintain dialogs include a call to a key dialog for input of the primary key. Key
dialogs can also be used for active help and foreign-key input. In this case, you must code
the call to the key dialog yourself.

Permissible Calls

The following dialogs can be called:

Called by Subdialog Modal Window Key Dialog Mass Processing

Maintain dialog X X X

Browse dialog X X X

Mass processing
dialog

 X X

Nonstandard X X

Deletion

Subdialog X X

Modal window X X

Key dialog X X

Copyright © Software AG 200220

Selecting FramesModal Dialogs - Level 3

Examples for Combining Production Frames
The following topics are covered below:

Basic Combinations
Variations

Basic Combinations

Key input and display or modification of data in a window:

Entry Dialog Maintain dialog

Key Selection Key dialog

Listing of data records of an object:

Listing Browse dialog

Mass Processing

Overview: Browse dialog

Mass Processing Mass processing dialog

Variations

Key input and display of several data windows:

Entry Dialog: Maintain dialog

Key Selection: Key dialog

Display Window Subdialog

Key input and display of several data windows with foreign key selection:

Entry Dialog Maintain dialog

Key Selection: Key dialog

Display Window Subdialog

Foreign Key Selection Key dialog

21Copyright © Software AG 2002

Examples for Combining Production FramesSelecting Frames

Input of selection criteria for a list of data records, selection of a key from a list and display of multiple data
windows:

Entry Dialog 1 Browse dialog

This is created from two independent functions:

the browse dialog, and
display functions.

The display function can be invoked using a command from the browse dialog. Selected key values are passed.

Entry Dialog Maintain dialog

Key Selection Key dialog

Display Window Subdialog

Selection Window Modal window

The selection processing can be used for the selection of data as well as to determine subsequent processing.

Input of a selection criterion to determine subsequent processing:

Entry Dialog Nonstandard dialog

Subsequent Processing Subdialog

Listing with optional expanded selection in a subordinate window:

Listing Browse dialog

Selection Modal window or subdialog

Mass Processing

Overview Browse dialog

Mass Processing Mass processing dialog

Zoom Modal window

Note:
All data modifications are immediately applied to the database. No preliminary copies are created.

Copyright © Software AG 200222

Selecting FramesVariations

Batch Programs

Call from an online function:

Batch Program: Skeleton

The batch program can be called from any module.

Alternate batch program:

Selection: Nonstandard dialog

Batch Program: Skeleton

This variant is recommended when, for example, several optional lists are to be created as batch programs.

23Copyright © Software AG 2002

VariationsSelecting Frames

Using Tables in Frame Gallery
The following topics are covered below:

Using Tables
Creating Help for Table Data
Creating an Access Module for a Table
Creating a User Exit for Single-object Processing

Using Tables
Codes are frequently used in applications to shorten input and/or to guarantee the uniqueness of the texts or
names allocated to these codes. These codes are generally stored in tables. Tables can also be used, for example,
to make multiple-language texts available.

These tables are rarely modified, for example:

Status table:
1 = in development
2 = in test
3 = released
Country table:
D = Germany
CH = Switzerland

Even a currency table which is updated daily is considered a table in this context.

No special actions, for example, bookings or calculations, are carried out on table data. Only maintenance
functions, such as "add", "modify" and "delete", are necessary to update the content.

Otherwise, the table data are used only for display, for validation or as a basis for calculations when processing
other objects.

The following topics are covered below:

Criteria for Defining a Table
Maintenance Functions for Tables
Access to Table Data
Selection Help for Table Data

Copyright © Software AG 200224

Using Tables in Frame GalleryUsing Tables in Frame Gallery

Criteria for Defining a Table

To define an entity as an application shell table, the following criteria must be met:

There are at most 50 fields, including the table keys.
There are alphanumeric and numeric key fields.
There can be up to four keys.
The table key can consist of up to five components.
No numeric field is longer than 27 digits.
No alphanumeric field is longer than 240 characters.
The table key is not longer than 30 characters.
Processing is limited to the maintenance functions Add, Modify, Display and Delete.

Maintenance Functions for Tables

Tables of the kind described above can be defined and maintained with the help of the application shell table
administration system.

No file must be created, and the implementation of maintenance functions is also not necessary. All necessary
maintenance functions are available immediately after the definition of the table in the application shell.

If special validation is necessary for the processing of the table data, the user exit of the table-administration
system can be used to call specific processing for the table.

How to create tables is described in the Natural Application Shell Manual.

Access to Table Data

To access table data from your application functions, access modules are available, which are described in
section Creating an Access Module for a Table.

Selection Help for Table Data

A module for carrying out selection help through table keys, is available. This module is parameter driven and is
callable from any application dialog function.

25Copyright © Software AG 2002

Criteria for Defining a TableUsing Tables in Frame Gallery

Creating Help for Table Data
Input for a function must often be validated against a table. Active help in the form of a selection table ensures
that the end user enters a valid value.

To link selection help for table data into a dialog, you have to code the call to the selection help and the receipt
of the selected value.

For integration of a selection help for table data in an individual dialog, you must code the call of the selection
help and the receipt of the selected value.

Define the following local variables:

 1 #REF_TAB_SEL_INFO (A65)
 1 REDEFINE # REF_TAB_SEL_INFO
 2 #REF_TAB_CLIENT_ID (A2)
 2 #REF_TAB_ID (A12)
 2 #REF_TAB_DESC_NUM (N1)
 2 #REF_TAB_VALUE (A30)

Invoke the selection help using the following suggested code:

 MOVE LZ_KEY_TYPE_FOREIGN TO LZ_KEY_TYPE
 *
 MOVE client ID TO #REF_TAB_CLIENT_ID
 MOVE table ID TO #REF_TAB_ID
 MOVE descriptor number TO #REF_TAB_DESC_NUM
 MOVE field value TO #REF_TAB_VALUE
 MOVE #REF_TAB_SEL_INFO TO PZ_LOCAL.PZ_SEL_KEY
 *
 OPEN DIALOG ’ZCAKDFD’ #DLG$WINDOW WITH PZ_LOCAL

Receive the selected value in customizable component Z_RECEIVE_KEY:

 MOVE PZ_RECEIVE.PZ_SEL_KEY TO #REF_TAB_SEL_INFO
 MOVE #REF_TAB_VALUE TO ...

Copyright © Software AG 200226

Using Tables in Frame GalleryCreating Help for Table Data

Creating an Access Module for a Table
The interface of the general access module for table data is large and complex. It is therefore useful - in order to
access table data from a business function - to create an access module especially designed for a single table,
which returns the required fields, and is easy to use.

The following steps are recommended:

1. Use an existing module as basis.
2. Save it under a different name.

Do not modify the example module.

The following naming convention is used for access modules:

xxxAS00y

where xxx is the object code and y is the Natural object type.

Example Library Save as

ZXFCAS0A (PDA) SYSCOMP xxxAS00A (as parameter data area)

ZXFCAS0N (Text) SYSCOMP xxxAS00N (as subprogram)

ZXFCAS0D (Dialog) SYSCOMP xxxAS00D (as dialog)

Parameter Data Area

Enter the fields for the table using exact formats and lengths.

Warning:
You must not modify the field P_PTS nor the lengths of the key fields.

Subprogram

Complete the place holder for parameter data area, field names, table names, client ID and language code
according to the instructions in the subprogram.

27Copyright © Software AG 2002

Creating an Access Module for a TableUsing Tables in Frame Gallery

Dialog

The dialog can be used to test the subprogram.

Include the parameter data area you have just created (see section Parameter Data Area) into the local data
definition.

Adapt the user interface as follows:

include an input field for each table field
link the input field via linked variables to the corresponding variable from the parameter data area
specify a text constant for each input field.

Warning:
Do not modify any other fields on the mask, particularly the PTS field.

Complete the subroutine Z_ACCESS, i.e. include the name of your subprogram and the respective parameters.

Testing Further Database Operations

Copy an existing push button or modify the push button label.

Modify the operation code PZ_AS_OPERATION in the click event for the push button.

If necessary, you can rename the label of an existing push button.

Copyright © Software AG 200228

Using Tables in Frame GalleryTesting Further Database Operations

Creating a User Exit for Single-object Processing
The table administration system contains a number of standard validations. Individual validations can be
executed via this user exit.

It can also be used for data conversions.

Invoking the User Exit
Creating the User Exit

Invoking the User Exit

The user exit is invoked twice:

immediately before accessing the table data, and
immediately after invoking access to the table data.

Creating the User Exit

Use an existing module as a basis.

Save it under a different name.

Warning:
Do not modify the basis module.

The following naming convention is used for access modules:

xxxAS00y

where xxx is the object code and y is the Natural object type.

Basis Library Save as

ZXFCAS0A (PDA) SYSCOMP xxxAS00A (as parameter data area)

ZXFCAS1N (Text) SYSCOMP xxxAS00N (as subprogram)

Parameter Data Area

Enter the fields for the table using exact formats and lengths.

Warning:
Do not modify the field P_PTS or the length of the key ID fields.

29Copyright © Software AG 2002

Creating a User Exit for Single-object ProcessingUsing Tables in Frame Gallery

Subprogram

Complete the place holder for the parameter data area, field names, table names, client ID and language code
according to the instructions in the subprogram.

Warning:
Do not modify variables beginning with PZ_AS, etc.

The following variables are exceptions and may be modified:

PZ_AS_RSP,
PZ_AS_MSG(*)
PZ_AS_FLD_POS must be set with P_XXX_<field-name>_POS in the case of an error.

The contents of your data fields are in the variables P_xxxx of the parameter data area xxxAS00A.

To control when a job is executed, use the variables LZ_AFTER_ACCESS and LZ_BEFORE_ACCESS.

LZ_BEFORE_ACCESS is used before the table data is accessed.

LZ_AFTER_ACCESS is used after the table data is accessed, immediately before data output.

The following operation codes can be used for job control:

LZ_XA_STORE
LZ_XA_UPDATE
#ZCA_DEL_DESC_i(i=1...4)
#ZCA_READ_BY_DESC_ i(i=1...4)

Note:
Transfer the contents of P_xxxx into the internal format only when you have modified data.

Copyright © Software AG 200230

Using Tables in Frame GalleryCreating the User Exit

Generating Functions in Frame Gallery
The frame gallery provides pretested and error-free frames that you can use to generate functions. Functions are
dialogs and other Natural modules. When you use a frame, you need not "create" the dialogs yourself in the
dialog editor.

There are two types of frames:

Prototype Frames: This type of frame is used to create a prototype. Database access is not included. It is
intended to provide a quick preview of the dialog layout which can then be discussed with, for example, the
business department.
If you want to insert controls such as command buttons or any additional functionality into the generated
prototype, you can use the dialog editor.
Production Frames: This type of frame is used to generate dialogs. It is linked with an object view to
provide database access.
An object view consists of access modules, local data areas and parameter data areas which allow database
data for a given object type to be created, read, updated and deleted.

The following topics are covered below:

Criteria for Using Frame Gallery Frames
Accessing the Frame Gallery
Creating an Object View
Generating Dialogs

Criteria for Using Frame Gallery Frames
The frame gallery can be used to produce object views, dialogs and other modules, assuming the following
prerequisites are met:

the search key is unique;
the key length does not exceed 65 bytes;
the key is not contained in a periodic group and is not a multiple-value field.

Subdescriptors can be used, but generated code will require update if a field is used for more than one
subdescriptor in a superdescriptor.

Superdescriptors can only be used if DDMs include descriptions of the structure of the superdescriptor. If you
use a superdescriptor containing more than two components, you are advised to update the generated key and
browse dialog layouts.

Keys other than alphanumeric, numeric, and packed are not fully supported. If you use such keys, you will need
to add MOVE EDITED statements to the generated code.

You may wish to improve the display formats of some fields in list boxes and dialog layouts.

Accessing the Frame Gallery
 To access the frame gallery

1. Open the database and start Natural.
2. From the Object menu, choose Generate. Or choose the Generate tool-bar button:

31Copyright © Software AG 2002

Generating Functions in Frame GalleryGenerating Functions in Frame Gallery

As a result, the "Frame Gallery" dialog window appears.

Creating an Object View
When creating a new dialog, you must define an object view.

An object view is a set of Natural modules used for standard database access (store, update, delete, read, list) for
a number of fields selected from a data definition module (DDM).

 To create an object view

You first define the DDM and select the DDM fields that will be used.

1. In the "Frame Gallery" dialog window, choose the New button.
The empty "Object View Creation" window appears.

2. In the "DDM list" list box, select the DDM.

Copyright © Software AG 200232

Generating Functions in Frame GalleryCreating an Object View

All the elementary fields of the DDM you selected are shown in the ’’Elementary fields" list box.

3. In the "Elementary fields" list box, select the fields you want.
To select more than one item, press CTRL while you click the item.
You can also select a range of items by selecting the first item and then pressing SHIFT and clicking the last
item.
Or drag the mouse over a range of items.
To select all items, choose the Select All button.

4. Choose the Import button.
All selected fields are imported and the window is closed. The imported fields are then shown in the
"Object View Creation" window.

Optional - You can specify a prompt (label) to be used for a specific input field in the generated dialogs. If
you do not specify a prompt, the prompt is derived from the name shown in the "View fields" list box.

5. From the "View fields" list box, select the field.
The default prompt appears in the "Prompt" text box. You can modify the prompt in this text box.
Optional - For fields with a dimension, the dimension is set by default to 1. If necessary, you can update the
dimension.

6. From the "View fields" list box, select the field.
The field’s dimension appears in the "Dimension" text box. You can modify the dimension in this text box.
The following parameters are used during the generation process. They can be modified.

33Copyright © Software AG 2002

Creating an Object ViewGenerating Functions in Frame Gallery

Object type By default, this is set to the DDM name. It is used to identify the object type in the
application shell.

Object view The logical name of the object view to be used in the generated module.

Prefix The prefix used for field names, module names, function ID, etc. in the application shell.

Max. objects This parameter applies to multiple object access: the maximum number of objects that are
to be accessed with each call to the multiple object access module.

Search key Search key for database access. The key must uniquely identify each object.

SQL When you select this check box, you can create SQL access modules. The SQL table that
you specify in the "Table name" text box will then be used.
To remove search key components that are not required, select the "Search key" option
button. Then select the fields from the "View fields" list box and choose the Remove
button.
Note that the search key consists of a maximum of five components.

Dynamic
command
names

By default, generated dialogs use fixed command names. If you check this box, command
names are retrieved at runtime from the application shell’s command definitions. Using
the application shell, you can change dynamic command names without having to update
dialogs. You can also translate command names into additional languages.

All fields that you have imported are available both for single-object access (for example in the maintain
dialog) and multiple object access (for example in the key selection dialog).
Optional - You can remove fields that are not required for multiple-object access or single object access.

7. Select the "Multiple object access" option button.
Or select the ’’Single object access" option button.

8. Hold down CTRL and select all fields not required.
9. Choose the Remove button.

Only the required fields are now displayed in the "View fields" list box.
Optional - You can display and/or modify the names of the Natural modules that are to be generated.

10. To display the names of the modules, choose the Module Names button.
The "Object View Module Names" window appears.

From this window you can rename the modules that will be generated.
When the object view has been created, you will find the generated Natural modules in your Natural library
window.

Copyright © Software AG 200234

Generating Functions in Frame GalleryCreating an Object View

Generating Dialogs
When at least one object view has been defined, you can generate dialogs.

The description below the frame name provides a brief description of the selected frame. It also informs you
whether additional dialogs are required.

The "Object view" drop-down list box contains a list of available object views.

 To generate a dialog

1. Optional - To add a new object view, choose the New button.
The "Object View Creation" window appears.

2. Optional - To display information about the object view, choose the Info button.
The "Object View Creation" window appears.
For frames which include a list box or a data entry component, you can select fields to be included in the
default dialog layout. By default, the following fields are selected for display.

Data entry dialog
component

All fields read by the selected object view’s single object access module. With the
exception of the nonstandard dialog, the list does not include the search key, which is
included as a separate dialog component.

List box
component

All fields read by the selected object view’s multiple object access module, including
the search key.

35Copyright © Software AG 2002

Generating DialogsGenerating Functions in Frame Gallery

3. To deselect some of the preselected display fields, choose the Data button.
The "Select Fields from Object View" window appears.

Function ID Frame Type

_BRW Browse dialog

_MNT Maintain dialog

_DEL Deletion subprogram

_MASS Mass processing dialog

_NST Non-standard dialog

To select more than one item, you press CTRL while you click the item.
You can also select a range of items by selecting the first item and then pressing SHIFT and clicking the last
item.
To select all items, you choose the Select All button.

4. Choose the OK button to return to the "Frame Gallery" window.
The "Module name" text box contains the name of the module that is to be generated. The name depends on
the frame you have chosen. This name can be modified.
The "Function ID" text box contains the ID that is used in the application shell in order to invoke the
generated dialog. The ID can be modified. The following IDs are available:

Function ID Frame Type

_BRW Browse dialog

_MNT Maintain dialog

_DEL Deletion subprogram

_MASS Mass processing dialog

_NST Non-standard dialog

The "Key dialog" text box contains the module name of a key dialog that is required for a maintain dialog
or deletion dialog. The key dialog can be generated before or after you generate a delete or maintain dialog.
However, the key dialog must exist before the delete or maintain function can be invoked.
If this is the first dialog for the object type, the "Add Object Type" window appears.
Additionally, when you generate a browse, maintain, delete, mass processing, or nonstandard dialog, the
"Add Function" window appears.
These windows are similar.

Copyright © Software AG 200236

Generating Functions in Frame GalleryGenerating Dialogs

5. In the "Name" text box, enter the name of the object type or function.
6. In the "DIL text" text box, enter the text to be displayed in the Dynamic Information Line for this object

type or function.
7. Choose the OK button.

The dialog is created.
Optional - Choose the Edit module button.
The newly created dialog is loaded into the dialog editor and you automatically leave the frame gallery.

37Copyright © Software AG 2002

Generating DialogsGenerating Functions in Frame Gallery

Customizing a Generated Application
Once the dialogs and other modules have been generated using the frame gallery, you use the Natural dialog
editor to modify the dialog layout and to customize the generated code to conform to application-specific
requirements.

Modules generated with the frame gallery include:

Internal frame logic. The internal frame logic, or frame code, covers a large amount of the processing
required to create a working module.
Application specific code. Based on the DDM and fields you select, appropriate code is generated to define
data structures, access and update database information, and produce dialog layout. This generated code
meets most simple requirements, although you will need to modify the generated code to handle binary
data, keys with unusual data types, or to improve dialog layouts.
Customizable components which contain generated code and suggested code. Suggested code is included as
a Natural comment. Suggested code helps you add further applications-specific code for your own
requirements, for example to: link dialogs, handle validation, or provide active help. The customizable
components can be modified and/or extended.

In modules other than dialogs, the components above are simply included together and are all modifiable using
the appropriate editor.

In dialogs, the internal frame logic is included in protected code segments which are not visible in the dialog
editor. The protected code segments make extensive use of copycode.

The following topics are covered below:

Customizable Components
Generated Code
Suggested Code
Integrating a Dialog in the Application Shell

Customizable Components
The generated application-specific code and the suggested code in dialogs are included in customizable
components. These are inline subroutines which are visible in the dialog editor, and which you can modify to
meet your own requirements. Help is available in the dialog editor to explain how each customizable component
can be used. The section Application Frames explains which customizable components are used by each frame.
The section Customizable Components explains each customizable component in detail.

When you add application-specific code or modify the generated code, it is important to understand how the
internal frame logic works and how you can control its behavior.

The following topics are covered below:

Commands
Frame Logic Control Variables
Skeleton Objects

Copyright © Software AG 200238

Customizing a Generated ApplicationCustomizing a Generated Application

Commands

The processing in dialogs is triggered by events. These events are handled initially by the internal frame logic
which translates them into commands. The standard commands are described in section Standard Commands.

The frame control logic calls different customizable components depending on the command being processed.
See section Application Frames for a list of the components activated when a command is processed and the
sequence in which these components are activated.

The frame control logic is controlled by numerous variables, which have a default setting, as described in section
Application Frames. By changing these variables, it is possible to modify the internal behavior of the frame
control logic contained in the protected code segments of each frame.

Frame Logic Control Variables

You can influence how the internal frame logic works by setting frame logic control variables. Some of these
variables are set in the generated code included in customizable components and you can change their settings.
Additional variables have defaults and are not explicitly set in the generated code. However you can add code to
change the default (usually in the initialize subroutine). See section Application Frames for a list of variables,
their usage and default settings.

Reusable Components

When you customize modules produced using the frame gallery, you can call various reusable components from
the generated code. The reusable components are subroutines, subprograms, and other objects). These
components are described in the section Reusable Components.

Skeleton Objects

Additional skeleton objects are provided to create some advanced components, for example in list box
processing.

 To implement a module

1. Copy the skeleton object into a new object.
Do not modify the skeleton itself.

2. Fill in the suggested code (data definition and coding) for the new object.

39Copyright © Software AG 2002

CommandsCustomizing a Generated Application

Generated Code
Prototype frames contain virtually no generated code.

Production frames include the basic processing required for simple data maintenance functions based on the
DDM and fields selected by the user when creating the object view and dialog. It includes:

a basic dialog layout;
inclusion of references to the LDAs, PDAs and subroutines associated with the selected object view;
logic to handle database access and transfer of data between the user interface and the database; and
logic handling some standard navigation links between dialogs (for example, the linking of a key dialog
with a maintain dialog).

This generated code is adequate for very simple functions. It is normally necessary to make changes to the
generated dialog for the following reasons:

to improve the dialog layout;
to add code to handle requirements for data validation, improve handling of numeric fields, etc.; and
to link dialogs, for instance to link a maintain dialog with an associated subdialog.

Suggested Code
The suggested code can be regarded as providing a model for the implementation of functions of medium
complexity.

Suggested code statements are contained in the customizable components as comment lines. They consist of
syntactically correct Natural statements. Values which require customizing, for example context-specific
variables, are in lower case.

Naming Conventions in the Suggested Code
Skeleton Data Definitions

Naming Conventions in the Suggested Code

To assist in the use of SCAN/REPLACE in suggested code, certain conventions have been followed:

Placeholder Description

view indicates view names

xxx indicates a view or area prefix

#xxx prefix for user-defined variables

There are also other placeholders that you must modify manually. For example, "field1" must be replaced by a
field name.

Depending on program-specific requirements, you can also add new code.

Copyright © Software AG 200240

Customizing a Generated ApplicationGenerated Code

Skeleton Data Definitions

In prototype frames, there is suggested code for data definitions, for example placeholder local data areas or
parameter data areas for view fields that are present in the form:

xxxAS00A /* Single-object PDA

You must replace the placeholder "xxx" with the appropriate view prefix.

Integrating a Dialog in the Application Shell
If you are using the frame gallery, dialogs are automatically integrated into the application shell. In some cases,
however, you must manually integrate the dialog into the application shell.

 To integrate a dialog into the application shell

1. Define a new object type (command Object type, action New) in the application shell.
2. Define a new function (command Function, action New) in the application shell.

Depending on the dialog type you create, we suggest you use the following function IDs, where "xxx" is the
prefix you defined for the object view:
- xxx_BRW (browse dialog)
- xxx_MNT (maintain dialog)
- xxx_DEL (delete subprogram)
- xxx_MASS (mass processing dialog)
- xxx_NST (nonstandard dialog)

3. Select the menu command Options and choose Refresh Initialized Data.
Once the function is defined, it can be called via the ’’Direct Call" dialog.
To integrate the new function into the graphical navigation, see the Natural Application Shell
documentation.

41Copyright © Software AG 2002

Integrating a Dialog in the Application ShellCustomizing a Generated Application

Communication Between Dialogs
Event-driven applications require communication between various dialogs. New dialogs must be opened, and
information must be exchanged between existing dialogs.

This section describes the various methods for communication between dialogs.

The Standard Interface
Calling a Dialog

The Standard Interface
All dialogs implemented using frames have a standard interface. Parameters are defined in the parameter data
area ZXXREC0A. All variables of this parameter data area are collected within the group PZ_RECEIVE.

Standard Interface Structure

The standard interface is divided into two areas, PZ_STRUCTURE and PZ_DATA.

The group PZ_STRUCTURE contains all variables related to application control. These variables are used
primarily by the frames.

The array PZ_DATA (A100/1: 40) is used for the transfer of technical data between dialogs. For example, an
array #PZ_DATA (A100/1:n) can be defined and then redefined according to specific requirements. PZ_DATA
is not used by the frames.

Example:

 01 #PZ_DATA (A100/1:2)
 01 REDEFINE #PZ_DATA
 02 #COMMENT (A250)
 02 #NAME (A30)
 .
 .
 MOVE ’ ’ TO #COMMENT
 MOVE ’ ’ TO #NAME
 MOVE #PZ_DATA (1:2) to PZ_DATA (1:2)

Local Copy of the Interface

The parameter values are no longer available following the processing of the EVENT or OPEN DIALOG
statements to which they are passed. Therefore, those parameter values which are required for a longer period of
time must be saved as local variables. A local copy of the parameter data area (Natural object ZXXLOC0A) is
available for this purpose. These variables are collected in group PZ_LOCAL.

During execution of internal commands, the frames transfer the relevant parameters from the group
PZ_RECEIVE into the group PZ_LOCAL.

Communication Using User-Defined Events

User-defined events can be added in the dialog editor for communication between dialogs (see the Natural
User’s Guide). This is necessary if customized processes are to be executed.

Copyright © Software AG 200242

Communication Between DialogsCommunication Between Dialogs

Communication using Pre-Defined Event Z_CMD_EXEC

Using the pre-defined event Z_CMD_EXEC, it is possible for another dialog to process certain commands. The
following suggested code can be used to do so (appropriate modifications must be made based on specific
requirements):

 MOVETO PZ_LOCAL....
 MOVE ’command’ TO PZ_LOCAL.PZ_CMD_ID
 MOVE LZ_CMD_TYPE_INT TO PZ_LOCAL.PZ_CMD_TYPE
 SEND EVENT ’Z_CMD_EXEC’ TO dialog-id
 WITH PZ_LOCAL

You can send any information via group PZ_LOCAL which contains PZ_DATA.

Calling a Dialog
A dialog call can be performed in various ways. The first dialog call occurs using an OPEN DIALOG statement.
The communication between existing dialogs is accomplished using the SEND EVENT statement.

The frames perform for the most part the communication between dialogs. There are, however, situations in
which communication must be implemented within customizable components. For example:

Browsers and entry dialogs for functions can be started using the corresponding commands. Subdialogs can
also be opened using commands.
The opening of modal windows and key dialogs for selection of foreign keys must be individually coded.
The exchange of information between dialogs.

Communication with Subdialogs

The subroutine Z_ASSIGN_SUBDIALOG in the maintain dialog is used to specify any subdialogs the maintain
dialog calls. You must modify the suggested code to specify the module name of each subdialog and the local
command ID you are associating with it and the total number of subdialogs associated with the maintain dialog.
You must also associate the local command with a push button and define the command ID you specify in the
application shell.

The actual communication between a subdialog and a maintain dialog is carried out by the internal frame logic.
When the local command is invoked, either the corresponding dialog is opened, or, if it is already open, it will
receive the focus.

After the subdialog has been opened, there can be further communication between the subdialog and the
maintain dialog.

The frame logic for the subdialog informs the maintain dialog whenever data contained within the subdialog has
been modified.

The frame logic of the subdialog or maintain dialog advises of the execution of commands which have an impact
on the other dialog. The frame descriptions indicate which commands cause this type of communication.

Controlling a Subdialog from another Subdialog

If a subdialog is to be controlled from another subdialog, the command assigned in the maintain dialog must be
passed from the subdialog to the maintain dialog. For this purpose, the following suggested code must be added
and adapted to the subroutine Z_CUSTOM_CMD in the subdialog:

43Copyright © Software AG 2002

Calling a DialogCommunication Between Dialogs

 IF LZ_STD.LZ_FRAME_CMD_ID EQ ’command’
 MOVE LZ_STD.LZ_FRAME_CMD_ID TO PZ_LOCAL.PZ_CMD_ID
 MOVE LZ_STD.LZ_FRAME_CMD_TYPE TO PZ_LOCAL.PZ_CMD_TYPE
 SEND EVENT ’Z_CMD_EXEC’ TO PZ_LOCAL.PZ_MAIN_DLG
 WITH PZ_LOCAL
 END_IF

Foreign Key Selection/Active Help

The key dialog for input/output of primary keys is opened by the frame of the maintain dialog. This is done
during the processing of standard commands whenever the input of a key value is required.

If a key dialog is opened to select a foreign key, the following suggested code can be added and adapted:

 MOVE LZ_KEY_TYPE_FOREIGN TO LZ_STD.LZ_KEY_TYPE
 MOVE #field TO PZ_LOCAL.PZ_SEL_KEY

 OPEN DIALOG ’xxxKD0&D’ #DLG$WINDOW WITH PZ_LOCAL

When a key value is selected, the component Z_RECEIVE_KEY is executed in the calling dialog and the key
value can be transferred to the corresponding field.

Note:
If from one dialog, selection help for various fields is to be called, the field for which selection help is to be
opened must be marked with a user-defined indicator. During the transfer of the key value in component
Z_RECEIVE_KEY, the corresponding field must be passed based on the identifier.

Calling Modal Windows

Modal windows are not opened by frames. The open dialog can be coded either in an event handler or in a
specialized component. The following suggested code can be added and adapted:

 MOVE data TO PZ_LOCAL.PZ_DATA(1:n)

 OPEN DIALOG ’xxxMW0&D# #DLG$WINDOW WITH PZ_LOCAL

Following the modification confirmation in the modal window, the component Z_RECEIVE_DATA is executed
in the output dialog. The modified data from the array PZ_RECEIVE.PZ_DATA can then be transferred to the
corresponding local variables.

Note:
If from one dialog, multiple modal windows are to be called, the window to be opened must be marked with a
user-defined indicator. This indicator is also relevant during data transfer.

Commands for Opening a Dialog

The opening of certain dialogs can be invoked using a special type of command as defined in the Natural
Application ShellManual. The frames of the dialog in which the commands are to be invoked open automatically
the desired dialog. They need not be programmed.

Starting an Application

A dialog for icon-based navigation can be started with the command type "Start an application".

Copyright © Software AG 200244

Communication Between DialogsForeign Key Selection/Active Help

Starting a Browser

Browse functions can be started using the command type "Start a browser".

Starting a Function

Functions can be started using the command type "Start a function". A key is provided using the variable
PZ_LOCAL.PZ_SEL_KEY. This is used for the function start if the switch PZ_LOCAL.PZ_KEY_FILLED is
set to TRUE.

In maintain dialogs, a new function with the same Action and Object Type is started using the command
Z_OPEN.

In maintain dialogs, for the action type New, a new function with the same object type and the selected action is
started.

For browse dialogs, for the commands of type Action, a function for each selected data record is started.

For a description of how to start applications, browse functions and other functions, see Starting a Dialog
(Application, Function, Browse).

45Copyright © Software AG 2002

Commands for Opening a DialogCommunication Between Dialogs

Application Frames
The following topics are covered below:

Frame Overview
Browse Dialog
Deletion Subprogram
Key Dialog
Maintain Dialog
Mass Processing Dialog
Modal Window
Nonstandard Dialog
Subdialog
Background Program
Load Objects Subprogram
Unload Objects Sub

Frame Overview

Frame Description

Browse dialog
Displays a list of objects. The maintain or mass processing dialog or the deletion
subprogram can be invoked for selected objects.

Deletion
subprogram

Deletes an object, displaying a message box to request confirmation of the deletion from
the user. It requires an associated key dialog.

Key dialog
Used to provide open object, save as and active help windows. It allows the input of an
object ID or the selection of an object from a list.

Maintain dialog
Allows the creation, display, and update of individual objects. It requires an associated
key dialog.

Mass processing
dialog

Allows the creation, display, update and deletion of multiple objects. This dialog does
not use preliminary copies.

Modal window
Multi-purpose modal window. No default dialog layout/data access is produced. The
dialog includes standard navigation and command handling logic.

Nonstandard dialog Includes standard logic for navigation and command handling.

Subdialog Used in association with a maintain dialog. (The link must be manually coded.)

Background
program

This program is used to implement background programs which start from an online
program using subprogram ZXBG010N.

Load objects
subprogram

This subprogram is used to load objects of a specified type into the database from a
workfile.

Unload objects
subprogram

This subprogram is used to unload objects of a specified type from the database to a
workfile.

For each dialog type except for modal windows, there is both a production and prototype variant of the program
frame.

Copyright © Software AG 200246

Application FramesApplication Frames

Production versions of each dialog type (except modal windows) include data access and a default dialog layout
for the accessed data.

Prototype versions do not include data access or a default layout for the data accessed.

Browse Dialog

Description

Search and overview functions are provided by this frame.

As result of a search, data records are displayed in a list box. By selecting data records and choosing an action,
the corresponding function is called for each of the selected data records.

This frame distinguishes between the mass processing action and all other actions.

For the mass processing action, the function is only called once for all selected data records. The mass
processing and browse dialogs then communicate with one another using commands.

For all other actions, a separate function is started for each selected data record.

Links with Other Dialogs

Called: Directly through the command system

Calls: Maintain dialog
Deletion subprogram
Mass Processing dialog

Dialog Layout

Component Comments

Search key Up to 5 search key components. If the key includes more than
2 components, it is advisable to improve the layout using the
dialog editor.

List box Displays fields read using the multiple object access module.

Push buttons Search

47Copyright © Software AG 2002

Browse DialogApplication Frames

Customizable Components

Components marked with an "X" contain executable code while unmarked components contain only suggested
code.

Name Prototype Production

Z_ACCESS_DATA X

Z_ASSIGN_INPUT_TO_KEY

Z_CMD_EXEC_END

Z_CMD_EXEC_START

Z_CUSTOM_CMD

Z_FILL_ITEM X

Z_INITIALIZE

Z_PASS_KEY X

Z_PROCESS_ITEM X

Z_RECEIVE_DATA

Z_RECEIVE_KEY

Z_SET_KEY_RANGE X

Z_UPDATE_ITEM X

Copyright © Software AG 200248

Application FramesCustomizable Components

Commands Supported

Command Explanation Components Activated

Z_LB_CLICK Selection in list box changed

Z_LB_FILL Fill-event in list box occurred Z_ACCESS_DATA
Z_FILL_ITEM

Z_LB_SELECT Process reaction on change of selection in list box

Z_CANCEL_DLG Mass processing gives notice of ending

Z_CANCEL_KEY Key dialog gives notice of ending

Z_CANCEL_TMR Cancel timer activated after runtime error

Z_CLOSE Close dialog

Z_EXIT End application Comments: A timer is activated
that triggers the command Z_EXIT_TMR.

Z_EXIT_TMR Close dialog due to ending of application

Z_GET_DATA Modal window sends data Z_RECEIVE_DATA

Z_GET_KEY Key dialog sends selected key Z_RECEIVE_KEY

Z_ITEM_ADD Another dialog sends new data records for
insertion in the list box

Z_UPDATE_ITEM
Z_PASS_KEY

Z_ITEM_DEL Another dialog sends keys for deletion from the
list box

Z_UPDATE_ITEM
Z_PASS_KEY

Z_ITEM_MOD Another dialog sends data records for modification
in the list box

Z_UPDATE_ITEM
Z_PASS_KEY

Z_ITEM_NEXT Mass processing expects key IDs of the next data
record selected

Z_PASS_KEY Z_SELECT

Z_ITEM_PREV Mass processing expects key IDs of the data record
previously selected

Z_PASS_KEY Z_SELECT

Z_SELECT_ALL Select all list box entries

Z_SEARCH Search is started anew Z_ACCESS_DATA
Z_FILL_ITEM Z_PASS_KEY

Z_SET_KEY_RANGE

Z_START_KEY Start with key Z_INITIALIZE

Z_START_NKEY Start without key Z_INITIALIZE

Type of command
Action

Function start for marked data records
(1) Only when list box is empty
(2) Only when list box is not empty

(1)Z_ASSIGN_INPUT_TO_KEY
(2) Z_PASS_KEY (2) Z_SELECT

Associated Variables

Name Value Comment

LZ_ALIGN_HORIZ True When changing the dialog size, the list box size is adjusted vertically.

 False No vertical adjustment of the list box size.

LZ_ALIGN_VERT True When changing the dialog size, the list box size is adjusted horizontally.

49Copyright © Software AG 2002

Commands SupportedApplication Frames

Name Value Comment

 False No horizontal adjustment of the list box size.

LZ_ADD_EVERY True Newly added data records are included in the list box, independent of
whether they fit in thecurrent range of records in the list box.

 False Only newly added data records that fit in the current range of records in
the list box are included in it.

LZ_ADD_ON_EMPTY True If the list box is empty, each newly added data record is included in the
list box.

 False Newly added data records are only included in an empty list box if there
are no data (EOD).

LZ_BOX Group consisting of LZ_BOX_ITEM and LZ_BOX_ITEM_KEY. The
group can be used for MOVE BY NAME statements as a simple way of
transferring fields in or out of database fields.

LZ_BOX_ITEM Matches the attribute STRING of a list box item. If several columns are
displayed in the list box, this variable must be redefined accordingly.

LZ_BOX_ITEM_KEY If the key is not completely contained in the list box, the missing parts
must be defined here.

LZ_DOUBLE.LZ_CMD_ID Sequence of commands (actions) for double-click on a list box item. The
first action allowed in the table counts as a command that is executed
with a double-click.

LZ_START_USER_INPUT True If the list box is empty or no entry selected and an action (not type add)
chosen, the subroutine Z_GET_KEY_USER_INPUT is called and then
the function is started with the key LZ_SELECT_KEY.

 False No reaction when an action is chosen and the list box is empty or no
entry is selected.

LZ_KEY_IN_LISTBOX True The list box contains the entire key of a data record.

 False The key of a data record is not completely contained in the list box.

LZ_MARGIN_RIGHT 40 Right margin in pixels between dialog and list box (only when
LZ_ALIGN_HORIZ = TRUE).

LZ_MARGIN_BOTTOM 40 Bottom margin in pixels between dialog and list box (only when
LZ_ALIGN_VERT =TRUE).

LZ_REC_EOD True No further data present.

 False Further data present.

LZ_REC_FOUND Number of data records that are found with an access.

LZ_REC_IND Index of the current data record in the table of a multiple-record access
module.

LZ_REC_NUM_FILL FILL 10 Number of data records to be read following an event on list box.

LZ_REC_NUM_SEARCH 0 Number of data records that are read for command Z_SEARCH.
Depending on the current screen resolution, the variable is set by the
frame to a multiple of LZ_REC_NUM_FILL.

LZ_SELECT_KEY Key value for the current data record. If the key consists of several
components, LZ_SELECT_KEY is to be redefined accordingly.

Copyright © Software AG 200250

Application FramesAssociated Variables

Name Value Comment

LZ_START_SEARCH True The search begins directly after the dialog is started. (Default for
production frame)

 False The start of the search must be explicitly triggered by the user. (Default
for prototype frame)

Variables for Controlling Frame Behavior

The following variables for controlling frame behavior do not appear in the suggested code. Values deviating
from the default can be assigned in the customizable component Z_INITIALIZE.

LZ_ALIGN_VERT,
LZ_ALIGN_HORIZ,
LZ_START_USER_INPUT,
LZ_KEY_IN_LISTBOX,,
LZ_MARGIN_RIGHT,
LZ_MARGIN_BOTTOM,
LZ_REC_NUM_FILL,
LZ_REC_NUM_SEARCH,
LZ_ADD_EVERY,
LZ_ADD_ON_EMPTY

51Copyright © Software AG 2002

Variables for Controlling Frame BehaviorApplication Frames

Deletion Subprogram

Description

Deletes an object, displaying a message box to request confirmation of the deletion from the user. It requires an
associated key dialog.

Links with Other Dialogs

Called: Directly through the command system from browse, maintain and mass processing dialogs.

Calls: None

Dialog Layout

Standard deletion confirmation box.

Customizable Components

Components marked with an "X" contain executable code while unmarked components contain only suggested
code.

Name Prototype Production

Z_DELETE X

Z_LOCK_RECORD X

Z_INITIALIZE X

Associated Variables

Name Value Comment

LZ_DELETE_KEY Record key to be deleted. This variable is to be redefined to correspond
to the data transferred.

PZ_MSG.PZ_MSG_FILL
(1)

 This variable should be set to the value of the key is to be used in display
format.

Copyright © Software AG 200252

Application FramesDeletion Subprogram

Key Dialog

Description

Used to provide open object, save as and active help windows. It allows the input of an object ID or the selection
of an object from a list.

Links with Other Dialogs

Called: To select object (maintain dialog, deletion subprogram)
to specify key of new object (maintain dialog, mass processing dialog)
to specify key of object SAVE AS (maintain dialog)

Calls: None

Dialog Layout

Component Comments

Search key Up to 5 search key components. If the key includes more than 2 components, it is advisable to
improve the layout using the dialog editor.

List box Displays fields read using the multiple object access module.

Push
buttons

OK, Cancel, Search

Customizable Components

Components marked with an "X" contain executable code while unmarked components contain only suggested
code.

Name Prototype Production

Z_ACCESS_DATA X

Z_CMD_EXEC_END

Z_CMD_EXEC_START

Z_CUSTOM_CMD

Z_FILL_ITEM X

Z_INITIALIZE X

Z_RECEIVE_DATA

Z_RECEIVE_KEY

Z_RETURN_KEY X

Z_SELECT X

Z_SET_KEY_RANGE

53Copyright © Software AG 2002

Key DialogApplication Frames

Available Commands

Command Explanation Components Activated

Z_LB_CLICK Selection in list box changed

Z_LB_DOUBLE
occurred

Double-click in list box
Z_RETURN_KEY

Z_SELECT

Z_LB_FILL Fill event of list box occurred Z_FILL_ITEM Z_ACCESS_DATA

Z_LB_SELECT Return selected list box item Z_SELECT

Z_CANCEL Close dialog

Z_CANCEL_KEY Key input was interrupted

Z_CLOSE Close dialog

Z_GET_DATA Modal window sends data Z_RECEIVE_DATA

Z_GET_KEY Key dialog sends selected key
Comments:
(1) Only when previous command was
Z_READ.
(2) For change of action within a dialog,
additionally the same components as under 2. are
run through.

1. Selection of a foreign key:
Z_RECEIVE_KEY

2. Selection of a key at the start of the
processing:
Z_INITIALIZE (1)
Z_CHECK_EXISTENCE Z_LOCK
RECORD Z_ADD_PREL_REC
Z_FILL_DIALOG

3. Input of a key at the close of the
processing:
Z_CHECK_EXISTENCE Z_LOCK
RECORD
Z_UPDATE_PREL_KEY
Z_VALIDATE
Z_UPDATE_PREL_REC
Z_ACTIVATE_PREL_REC (2)

Z_OK Pass value to calling dialog Close dialog Z_RETURN_KEY

Z_SEARCH Start of a search Z_SET_KEY_RANGE
Z_ACCESS_DATA Z_FILL_ITEM

Z_START_SEL Start as selection dialog Z_INITIALIZE

Z_START_SAVE Start as storage dialog Z_INITIALIZE

Copyright © Software AG 200254

Application FramesAvailable Commands

Associated Variables

Name Value Comment

LZ_BOX Group consisting of LZ_BOX_ITEM and LZ_BOX_ITEM_KEY. The
group can be used for MOVE BY NAME statements as a simple way of
transferring fields in or out of database fields.

LZ_BOX_ITEM Matches the attribute STRING of a list box item. If several columns are
displayed in the list box, this variable must be redefined accordingly.

LZ_BOX_ITEM_KEY If the key is not completely contained in the list box, the missing parts
must be defined here.

LZ_KEY_IN_LISTBOX True The list box completely contains the key of a data record.

 False The key of a data record is not completely contained in the list box.

LZ_REC_NUM_FILL 10 Number of data records to be read following a FILL event on list box.

LZ_REC_NUM_SEARCH 0 Number of data records that are read for command Z_SEARCH.
Depending on the size of the list box, the variable is set by the frame to a
multiple of LZ_REC_NUM_FILL.

LZ_SELECT Group to enable transfer of input fields using MOVE BY NAME into
other fields. Contains as only field LZ_SELECT_KEY

LZ_SELECT_KEY This variable must be redefined to correspond to the key to be transferred.

LZ_START_SEARCH True The search begins directly after dialog start. (Default for production
Frame)

 False The start of the search must be explicitly triggered by the user. (Default for
prototype Frame)

Variables for Controlling Frame Behavior

The following variables for controlling frame behavior do not appear in the suggested code. Values deviating
from the default are to be assigned in the customizable component Z_INITIALIZE.

LZ_KEY_IN_LISTBOX,
LZ_REC_NUM_FILL,
LZ_REC_NUM_SEARCH

55Copyright © Software AG 2002

Associated VariablesApplication Frames

Maintain Dialog

Description

Maintenance functionality is implemented in this frame. A dialog of this type implements "new", "modify" and
"display" actions.

If not all attributes of the object to be processed can be presented in one dialog, these can be distributed among
further dialogs. These dialogs should be implemented using the frame for subdialogs or for modal windows. The
maintain dialog communicates with subdialogs.

Modifications of data are made to preliminary copies of the data records. The original data are only modified
when a Save command is issued.

Links with Other Dialogs

Called: Directly through the command system from a browse dialog

Calls: Key dialog (required)
Deletion subprogram
Subdialogs (handcoded link)

Dialog Layout

Component Comments

Data entry Allows update of fields read using the single object access module, excluding the search key.

Push buttons Close, confirm

Copyright © Software AG 200256

Application FramesMaintain Dialog

Customizable Components

Components marked with an "X" contain executable code while unmarked components contain only suggested
code.

Name Prototype Production

Z_ACTIVATE_PREL_REC X

Z_ADD_PREL_REC X

Z_ASSIGN_DEFAULT_KEY X

Z_ASSIGN_SUBDIALOG

Z_CHECK_EXISTENCE X

Z_CMD_EXEC_END

Z_CMD_EXEC_START

Z_CUSTOM_CMD

Z_FILL_DIALOG X

Z_INITIALIZE X X

Z_LOCK_RECORD X

Z_NAVIGATE_ON_ERROR

Z_READ_PREL_REC X

Z_RECEIVE_DATA

Z_RECEIVE_KEY

Z_UPDATE_PREL_KEY X

Z_UPDATE_PREL_REC X

Z_VALIDATE

The following standard commands are available:

Z_APPLSTART,
Z_CALL,
Z_GET_GLOBAL,
Z_HELP,
Z_HELPCONTNT,
Z_HELPUSE,
Z_HELPSEARCH

57Copyright © Software AG 2002

Customizable ComponentsApplication Frames

Available Commands

Command Explanation Components Activated

Z_CANCEL Interrupt processing

Z_CANCEL_DLG Subdialog gives notice of closing

Z_CANCEL_KEY Key input was interrupted

Z_CANCEL_TMR Cancel timer activated after runtime
error

Z_CLOSE Close dialog
Comments:
(1) The same component as for the
command Z_SAVE.

(1)

Z_CONF_DLG Subdialog was confirmed

Z_CONFIRM Update preliminary files
Z_UPDATE_PREL_REC

Z_VALIDATE

Z_DATA_MOD Data has been modified

Z_EXIT End application
Comments:
A timer is activated that triggers the
command Z_EXIT_TMR.

Z_EXIT_TMR Close dialog due to ending of
application
Comments:
(1) The same component as for the
command Z_SAVE.

(1)

Z_GET_DATA Modal window sends data Z_RECEIVE_DATA

Z_GET_KEY Key dialog sends selected key
Comments:
(1) Only when previous command was
Z_READ.
(2) For change of action within a dialog,
additionally the same components as
under 2. are run through.

1. Selection of a foreign key:
Z_RECEIVE_KEY

2. Selection of a key at the start of the
processing:
Z_INITIALIZE (1) Z_CHECK_EXISTENCE
Z_LOCK RECORD Z_ADD_PREL_REC
Z_FILL_DIALOG

3. Input of a key at the close of the processing:
Z_CHECK_EXISTENCE Z_LOCK RECORD
Z_UPDATE_PREL_KEY Z_VALIDATE
Z_UPDATE_PREL_REC
Z_ACTIVATE_PREL_REC (2)

Z_MOD_DLG Subdialog was modified

Z_OPEN Start new processing

Z_READ Read in new data record
Comments:
(1) The same component as for the
command Z_SAVE.

(1)

Copyright © Software AG 200258

Application FramesAvailable Commands

Command Explanation Components Activated

Z_REFRESH Reverse changes since last update of the
preliminary copies

Z_READ_PREL_REC Z_FILL_DIALOG

Z_RESET_DLG Subdialog was refreshed

Z_SAVE Store modifications in original data
Comment:
Only for update functions. For insert
with key definition, the key dialog is
opened instead.

Z_VALIDATE (1) Z_UPDATE_PREL_REC
(1) Z_ACTIVATE_PREL_REC (1)

Z_SAVEAS Store data under another key with the
original data
Comment:
The key dialog is opened.

Z_START_KEY Start with key
Z_ASSIGN_CONTROL
Z_ASSIGN_SUBDIALOG
Comments:
(1) Only for update functions. If the key
can not be processed, the key dialog is
opened.

Z_INITIALIZE Z_CHECK_EXISTENCE
Z_LOCK_RECORD (1) Z_ADD_PREL_REC
Z_FILL_DIALOG

Z_START_NKEY Start without key
Comments:
(1) Only for insert with key definition.
Otherwise, the key dialog is opened.

Z_INITIALIZE Z_ASSIGN_SUBDIALOG
Z_ASSIGN_DEFAULT_KEY (1)
Z_ADD_PREL_REC (1) Z_FILL_DIALOG
(1)

Local command
allocated to
subdialog

Open subdialog or bring into the
foreground

Command of type
action with subtype
display or modify

Change of action
Z_INITIALIZE (2)
Comments:
(1) The same components as for the
command Z_SAVE.
(2) Only when switching between
actions within the same dialog.
(3) Only for update functions

(1)
Z_CHECK_EXISTENCE
Z_LOCK_RECORD (2) (3)
Z_ADD_PREL_REC (2)

59Copyright © Software AG 2002

Available CommandsApplication Frames

Associated Variables

Name Value Comment

LZ_USE_DEFAULT_KEY True When inserting, an artificial key is used until the first store.

 False When inserting, before processing, the key dialog for input of a key is
displayed.

LZ_MAIN_CONFIRM_ALL True When confirming the input in the maintain dialog, the input of the
subdialogs is also confirmed.

LZ_CHECK_MODIFY True The frame controls the activation of dialog elements allocated to
commands using the CHANGE- or CLICK-EVENTS of the dialog
elements.

LZ_GEN_TITLE True The dialog title is generated by the frame.

LZ_DLG_TYPE The dialog type allocated to the dialog.

LZ_SUB_DLG_CMD_ID(*) Commands which cause a subdialog to be started.

LZ_SUB_DLG_NAME(*) Natural names of the subdialogs that are available for using
commands

LZ_SUB_DLG_MAX Number of subdialogs available for using commands

LZ_KEY_DLG_NAME Natural name of the key dialog

LZ_ACTIVATE_MODULE Natural name of the activation module

PZ_SEL_KEY Key passed by key dialog

PZ_KEY Technical key

PZ_OBJ_ID Object type of the object to be processed

LZ_LOCK_OBJ_ID Object type of the data record to be locked

LZ_LOCK_KEY Key of the data record to be locked

LZ_VAL_ERR True During processing, an error has occurred

LZ_FOCUS Handling of the dialog element to be focussed

PZ_MSG.PZ_MSG_FILL (*) Additional information for message

PZ_MSG.PZ_MSG_NUM (*) SYSERR error number for message

PZ_ERR_FLD_POS Identification of the erroneous field in the interface of the access
module concerned

LZ_SUB_DLG_CMD_ID_SEL Command to start a subdialog that contains an erroneous field

PZ_CMD_ID Command

PZ_CMD_TYPE_MAIN Command type

PZ_ACT_TYPE_CUR Current Action type

PZ_DLG_ID Natural dialog ID

LZ_KEY_NEW New key when storing under a new key

LZ_PTS_NEW New processing time stamp when storing under a new key

LZ_PREL_KEY Key for access to preliminary data record

LZ_FRAME_CMD_ID Command to be processed by the frame

Copyright © Software AG 200260

Application FramesAssociated Variables

Variables Controlling Frame Behavior

The following variables which control frame behavior do not appear in the suggested code. Values deviating
from the default are to be assigned in the customizable component Z_INITIALIZE.

LZ_CHECK_MODIFY,
LZ_USE_DEFAULT_KEY,
LZ_GEN_TITLE,
LZ_MAIN_CONFIRM_ALL

61Copyright © Software AG 2002

Variables Controlling Frame BehaviorApplication Frames

Mass Processing Dialog

Description

A function for mass processing data can be produced either as a combination of a browse dialog with a mass
processing window or as a stand-alone mass processing window. The latter can be started directly from the
function list. All processing takes place in the quick-input window.

The mass processing function is usually called from a browse dialog: here, the processing of a single object can
be triggered by a double-click. With multiple selection of objects, the processing is triggered using the menu bar.
As input, the function receives the (first) key value selected in the browse dialog. The data can then be modified
and stored. The modifications are transferred into the browse dialog, in so far as the data concerned are visible
there. In addition to these modification functions, the following actions are possible:

reading a new object,
deleting an object,
saving a new object,
requesting the next object (for multiple selection),
requesting the previous object (for multiple selection), and
requesting a new object to be processed by double-clicking in the list in the browse dialog.

Data-modifying actions (record, modify, delete) are transferred into the database direct if save is chosen.

Links with Other Dialogs

Called: Directly through the command system from a browse dialog.

Calls: None

Dialog Layout

Component Comments

Data entry Allows update of fields read using the single object access module, excluding the search key.

Push buttons Close, Save, New, Read, Next, Previous, Help

Copyright © Software AG 200262

Application FramesMass Processing Dialog

Customizable Components

Components marked with an "X" contain executable code while unmarked components contain only suggested
code.

Name Prototype Production

Z_CHECK_EXISTENCE X

Z_CLEAR_INPUT_FIELDS X

Z_CMD_EXEC_END

Z_CMD_EXEC_START

Z_CUSTOM_CMD

Z_FILL_DIALOG X

Z_INITIALIZE X

Z_LOCK_RECORD X

Z_NAVIGATE_ON_ERROR X

Z_PASS_KEY X

Z_RECEIVE_DATA

Z_RECEIVE_KEY

Z_UPDATE X

Z_VALIDATE

63Copyright © Software AG 2002

Customizable ComponentsApplication Frames

Available Commands

Command Explanation Components Activated

Z_CANCEL_DLG Ending of the browse dialog
Comment:
(1) Components of Z_SAVE

(1)

Z_CANCEL_KEY Key input was interrupted

Z_CLEAR New
Comment:
(1) Components of Z_SAVE

(1) Z_CLEAR_INPUT_FIELDS

Z_CLOSE Close
Comment:
(1) Components of Z_SAVE

(1)

Z_DATA_MOD Data has been modified

Z_EXIT_TMR Close dialog due to termination of application (1)

Z_GET_DATA Modal window sends data Z_RECEIVE_DATA

Z_GET_KEY Key dialog sends selected key Z_RECEIVE_KEY

Z_KEY_MOD Key value has been modified

Z_LIST_MOD New selection from search dialog
Comment:
(1) Components of Z_SAVE
(2) Components of Z_START_KEY

(1) (2)

Z_NEXT Request next record from the selection list
Comment:
(1) Components of Z_SAVE Afterwards the
next key from the selection list is requested
from the browse dialog
(2) Components of Z_START_KEY

(1) (2)

Z_NEW_REC New record from browse dialog Comment: (1)
Components of Z_SAVE (2) Components of
Z_START_KEY

(1) (2)

Z_PREVIOUS Request previous record from the selection list
Comment:
(1) Components of Z_SAVE Afterwards the
previous key from the selection quantity is
requested from the browse dialog (2)
Components of Z_START_KEY

(1) (2)

Z_READ Read Z_PASS_KEY Z_CHECK_EXISTENCE
Z_LOCK_RECORD Z_FILL_DIALOG

Z_SAVE Save
Comment:
(1) Only for new record
(2) Only in case of error

Z_PASS_KEY (1)
Z_CHECK_EXISTENCE (1)
Z_LOCK_RECORD (1) Z_VALIDATE
Z_UPDATE
Z_NAVIGATE_ON_ERROR (2)

Copyright © Software AG 200264

Application FramesAvailable Commands

Command Explanation Components Activated

Z_SCRATCH Delete
Comment:
(1) Only in case of error
(2) Not in case of error

Z_UPDATE
Z_NAVIGATE_ON_ERROR (i)
Z_CLEAR_INPUT_FIELDS (2)

Z_START_KEY Start the function with selection Z_INITIALIZE Z_CHECK_EXISTENCE
Z_LOCK_RECORD Z_FILL_DIALOG

Z_START_NKEY Start the function without selection Z_INITIALIZE
Z_CLEAR_INPUT_FIELDS

Z_START_SOLO Start the function without selection and not
from the browse dialog

Z_INITIALIZE
Z_CLEAR_INPUT_FIELDS

Associated Variables

Name Value Comment

LZ_CLEAR_AFTER_SAVE False Retain the input fields after saving

 True Delete the input fields after saving

LZ_CLEAR_BEFORE_READ False Retain the input fields before reading

 True Delete the input fields before reading

65Copyright © Software AG 2002

Associated VariablesApplication Frames

Modal Window

Description

This frame can be used to implement every kind of modal window that is called from a higher level dialog.

Access to preliminary data is not possible from this frame. It is therefore not a suitable substitute for a subdialog,
but rather for optional marginal functionality which does not use much business data.

Parameters that should be passed to the frame can be supplied through the standard interface (PZ_DATA). The
return of data to the calling dialog also takes place through this interface.

Links with Other Dialogs

Called: Directly through the command system from a browse dialog

Calls: Deletion
Key dialog (required)
Modal Window (handcoded link)
Subdialogs (handcoded link)

Dialog Layout

Component Comments

Push buttons OK, Close, Help

Customizable Components

Components marked with an "X" contain executable code while unmarked components contain only suggested
code.

Name Prototype Production

Z_CMD_EXEC_START

Z_CMD_EXEC_END

Z_CUSTOM_CMD

Z_FILL_DIALOG X

Z_INITIALIZE

Z_NAVIGATE_ON_ERROR

Z_RECEIVE_DATA

Z_RECEIVE_KEY

Z_RETURN_PARMS

Z_VALIDATE

Copyright © Software AG 200266

Application FramesModal Window

Available Commands

Command Explanation Components Activated

Z_CANCEL Interrupt processing

Z_CANCEL_KEY Key input was interrupted

Z_CLOSE Close the window Frame performance
Z_VALIDATE
Z_RETURN_PARMS

Z_DATA_MOD Data has been modified

Z_GET_DATA Modal window sends data Z_RECEIVE_DATA

Z_GET_KEY Key dialog sends selected key Z_RECEIVE_KEY

Z_NAV_ERR Following batch error Z_NAVIGATE_ON_ERROR

Z_START_KEY Call the window with key Z_ASSIGN_CONTROL
Z_INITIALIZE
Z_FILL_DIALOG

Z_START_NKEY Call the window without key Z_ASSIGN_CONTROL
Z_INITIALIZE
Z_FILL_DIALOG

Additional Information

Predefined Command Buttons

If you remove predefined command buttons from the dialog, you must also remove the corresponding
instructions, which reference these dialog elements, from the Z_ASSIGN_CONTROL component.

Additional Processing

Where required additional processing, such as existence checking or storing data, can be included in the
Z_VALIDATE component.

Locking Data

The frame contains a subroutine for locking data, but does not execute this processing.

If additional records should be logically locked in a subdialog, the variables LZ_LOCK_OBJ_ID and
LZ_LOCK_KEY must be set and subsequently the subroutine Z_CHECK_AND_LOCK_RECORD must be
called.

Data Transfer

To transfer data to the modal window or from the modal window to the calling dialog, you can use the user
buffer PZ_DATA in the standard interface. If you wish to transfer data during processing to the calling dialog,
then use the command SEND EVENT and include the user buffer in the data sent.

67Copyright © Software AG 2002

Available CommandsApplication Frames

Nonstandard Dialog

Description

This frame supports navigation and command interpretation. It contains the standard interface for parameters,
through which there is communication within the whole application.

Any further functionality must be implemented individually.

Links with Other Dialogs

Called Directly through command system

Calls None

Dialog Layout

Component Comments

Data entry Allows update of fields read using the single object access module, excluding the search key.

Push buttons None

Customizable Components

Components marked with an "X" contain executable code while unmarked components contain only suggested
code.

Name Prototype Production

Z_CMD_EXEC_END

Z_CMD_EXEC_START

Z_CUSTOM_CMD X

Z_INITIALIZE

Z_RECEIVE_DATA

Z_RECEIVE_KEY

Copyright © Software AG 200268

Application FramesNonstandard Dialog

Available Commands

Command Explanation Components Activated

Z_CANCEL Interrupt processing

Z_CANCEL_KEY Key input was interrupted

Z_CANCEL_TMR Cancel timer activated after runtime error

Z_CLOSE Close dialog

Z_DATA_MOD Data has been modified

Z_EXIT Z_EXIT_TMR. End application
Comments:
A timer is activated that triggers the command

Z_EXIT_TMR Close dialog due to termination of application

Z_GET_DATA Modal window sends data Z_RECEIVE_DATA

Z_GET_KEY Key dialog sends selected key Z_RECEIVE_KEY

Z_START_KEY Start with key Z_INITIALIZE

Z_START_NKEY Start without key Z_INITIALIZE

Associated Variables

Name Value Comment

LZ_FRAME_CMD_ID Command to be processed by the frame.

PZ_SEL_KEY Key transferred by key dialog.

PZ_KEY Technical key.

PZ_OBJ_ID Object type of the object to be processed.

LZ_VAL_ERR True During processing an error has occurred.

LZ_FOCUS Handling of the dialog element to be activated.

LZ_DLG_TYPE The dialog type allocated to the dialog.

69Copyright © Software AG 2002

Available CommandsApplication Frames

Variables for Controlling Frame Behavior

The following variables for controlling frame behavior do not appear in the suggested code. Values deviating
from the default are to be assigned in the customizable component Z_INITIALIZE.

LZ_DLG_TYPE

Locking Data

The frame contains a subroutine for locking data, but does not execute this processing.

If additional records should be logically locked in a subdialog, the variables LZ_LOCK_OBJ_ID and
LZ_LOCK_KEY are to be set and subsequently the subroutine Z_CHECK_AND_LOCK_RECORD is to be
called.

Copyright © Software AG 200270

Application FramesVariables for Controlling Frame Behavior

Subdialog

Description

Subdialogs process additional attributes not included in the main dialog. Subdialogs are not modal, so for one
main dialog, several subdialogs can be processed at once. The communication between the main dialog and the
subdialogs is implemented internally within the frame. Modifications of the data are stored in preliminary copies
of the data records.

Several modal windows can be called by a subdialog. At one time, however, only one modal window can be
open. The calls to the modal windows are coded individually.

Multiple actions (add, modify, display) can be provided by one dialog.

Links with Other Dialogs

Called From maintain dialog (manually link)

Calls Modal window (manually link)

Dialog Layout

Component Comments

Data entry Allows update of fields read using the single object access module, excluding the search key.

Push buttons OK, Cancel, Confirm, Refresh, Help

71Copyright © Software AG 2002

SubdialogApplication Frames

Customizable Components

Components marked with an "X" contain executable code while unmarked components contain only suggested
code.

Name Prototype Production

Z_CMD_EXEC_END

Z_CMD_EXEC_START

Z_CUSTOM_CMD

Z_FILL_DIALOG X

Z_INITIALIZE X

Z_NAVIGATE_ON_ERROR

Z_READ_PREL_REC X

Z_RECEIVE_DATA

Z_RECEIVE_KEY

Z_UPDATE_PREL_REC X

Z_VALIDATE

Copyright © Software AG 200272

Application FramesCustomizable Components

Available Commands

Command Explanation Components Activated

Z_CANCEL Interrupt processing

Z_CANCEL_KEY Key input was interrupted

Z_CLOSE Close dialog Comments: (1) Only for update
functions.

Z_VALIDATE (1)
Z_UPDATE_PREL_REC (1)

Z_CONFIRM Update preliminary files Z_VALIDATE
Z_UPDATE_PREL_REC

Z_DATA_MOD Data has been modified

Z_ENTER_SUB Subdialog is activated

Z_GET_DATA Modal window sends data Z_RECEIVE_DATA

Z_GET_FOCUS Dialog is given the focus

Z_GET_KEY Key dialog sends selected key Z_RECEIVE_KEY

Z_INIT Initialization when maintain processing type
changes Z_FILL_DIALOG

Z_INITIALIZE Z_READ_PREL_REC

Z_NAV_ERR Following back error Z_NAVIGATE_ON_ERROR

Z_OK Update preliminary files and close dialog
Comments:
(1) Only for update functions

Z_VALIDATE (1)
Z_UPDATE_PREL_REC (1)

Z_REFRESH Reverse changes since last update of the
preliminary copies

Z_READ_PREL_REC Z_FILL_DIALOG

Z_SAVEAS Update dialog after ’Save as’ Z_INITIALIZE

Z_START_KEY Start of dialog Z_INITIALIZE Z_READ_PREL_REC
Z_FILL_DIALOG

73Copyright © Software AG 2002

Available CommandsApplication Frames

Associated Variables

Name Value Comment

LZ_CHECK_MODIFY True The frame controls the activation of dialog elements allocated to
commands using the CHANGE- or CLICK-EVENTS of all dialog
elements

LZ_GEN_TITLE True The dialog title is generated by the frame

LZ_DLG_TYPE The dialog type allocated to the dialog

PZ_SEL_KEY Key passed by key dialog

PZ_KEY Technical key

PZ_OBJ_ID Object type of the object to be processed

LZ_LOCK_OBJ_ID Object type of the data record to be locked

LZ_LOCK_KEY Key of the data record to be locked

LZ_VAL_ERR True During processing, an error has occurred

LZ_FOCUS Handle of the dialog element to be focussed

PZ_MSG.PZ_MSG_FILL
(*)

 Additional information for message

PZ_MSG.PZ_MSG_NUM
(*)

 SYSERR error number for message

PZ_ERR_FLD_POS Identification of the erroneous field in the interface of the access module
concerned

PZ_CMD_ID Command

PZ_CMD_TYPE_MAIN Command type

PZ_ACT_TYPE_CUR Current Action type

PZ_DLG_ID Natural dialog ID

LZ_PREL_KEY Key for access to preliminary data record

LZ_FRAME_CMD_ID Command to be processed by the frame

Copyright © Software AG 200274

Application FramesAssociated Variables

Variables for Controlling Frame Behavior

The following variables for controlling frame behavior do not appear in the suggested code. Values deviating
from the default are to be assigned in the customizable component Z_INITIALIZE.

LZ_CHECK_MODIFY,
LZ_DLG_TYPE,
LZ_GEN_TITLE

Locking Data

The frame contains a subroutine for locking data, but does not execute this processing.

If additional records should be logically locked in a subdialog, the variables LZ_LOCK_OBJ_ID and
LZ_LOCK_KEY are to be set and subsequently the subroutine Z_CHECK_AND_LOCK_RECORD is to be
called.

75Copyright © Software AG 2002

Variables for Controlling Frame BehaviorApplication Frames

Background Program

Description

This program is used to implement background programs which start from an online program using subprogram
ZXBG010N.

It contains the standard interface for the program with which the background program communicates.

Any additional functionality must be individually implemented.

Links with Other Dialogs

Called by: Dialogs using subprogram ZXBG010N

Calls: None

Customizable Components

Components marked with an "X" contain executable code while unmarked components contain only suggested
code.

Name Implementation Description

Z_BG_INIT Subroutine called once to execute program dependent
initialization.

Z_STORE_RESTART_DATA Subroutine used to write restart data.

Z_BG_CODING X Main subroutine to implement the background functionality.

Associated Variables

Name Description

LZ_PGM_PARM Parameters passed from the dialog.

LZ_RESTART_DATA Data required for a restart.

The variables are defined in the background program. They can be redefined to fit the data passed from the
dialog. The variable LZ_RESTART_DATA is set during the execution of the background program. It is needed
in case of a restart.

Copyright © Software AG 200276

Application FramesBackground Program

Load Objects Subprogram

Description

This subprogram is used to load objects of a specified type into the database from a workfile.

Links with Other Dialogs

Called by: The load data dialog in the application shell.

Calls: None

Customizable Components

Components marked with an "X" contain executable code while unmarked components contain only suggested
code.

Name Prototype Production

Z_UL_INIT_UNLOAD X

Z_UL_FILL_VIEW X

Z_UL_STORE_VIEW X#

Associated Variables

Name Description

PZ_UL_KEY_FROM The start key for the range of records to be loaded.

PZ_UL_KEY_THRU The end key for the range of records to be loaded.

PZ_UL_WF_DATA(*) The data of the record to be loaded.

77Copyright © Software AG 2002

Load Objects SubprogramApplication Frames

Unload Objects Subprogram

Description

This subprogram is used to unload objects of a specified type from the database to a workfile.

Links with Other Dialogs

Called by: The unload data dialog in the application shell.

Calls: None

Customizable Components

Components marked with an "X" contain executable code while unmarked components contain only suggested
code.

Name Prototype Production

Z_UL_INIT

Z_UL_SELECT_TOP X

Z_UL_SELECT_LOW X

Z_UL_WRITE_WORKFILE X

Z_UL_DELETE_RECORDS X

STORE_REFERENCED_VIEW

Associated Variables

Name Description

PZ_UL_KEY_FROM The start key for the range of records to be unloaded.

PZ_UL_KEY_THRU The end key for the range of records to be unloaded.

PZ_UL_WF_DATA(*) The data of the record to be unloaded.

Copyright © Software AG 200278

Application FramesUnload Objects Subprogram

Standard Commands
The application shell includes a command processor. The command processor is a background dialog which
controls the processing of defined commands. You can used the attribute COMMAND-ID in the Natural dialog
editor to connect some types of dialog elements with a command. The following dialog elements can be attached
to commands:

Menu item. The menu is defined in the dialog editor.
Tool bar item. The tool bar can be defined in the dialog editor and/or assigned dynamically depending on
the dialog type. The dynamic tool bar and the dialog type must be defined in the application shell.
Push button. Push buttons can be defined in the dialog editor or added dynamically.
Bitmap. Bitmaps can be defined in the dialog editor or added dynamically.

Standard commands are commands which are predefined in the application shell and can be processed directly
by frames.

A standard command can be a local or an internal command. Although the commands of type "action", "start a
function", "start a browse" and "start application" can also be processed from most frames, they are not
considered standard commands (because of their type).

Not all standard commands are supported by all frames. The respective frame descriptions indicate which frames
support which standard commands. The module Z_CUSTOM_CMD is called to process any standard command
which is not supported by a given frame.

The following overview describes the functionality of each standard command. A complete description of the
processing of standard commands can be found in the corresponding frame description.

Local Standard Commands
Internal Standard Commands
Tracing a Command

79Copyright © Software AG 2002

Standard CommandsStandard Commands

Local Standard Commands
Local standard commands are defined in the application shell administration system as local commands. They
are invoked by a user action, for example, selection of a menu entry.

The processing of local commands can involve the activation of multiple internal commands in other dialogs.

Z_APPLSTART
Z_CALL
Z_CANCEL
Z_CLEAR
Z_CLOSE
Z_CONFIRM
Z_EXIT
Z_HELP
Z_HELPCNTNT
Z_HELPUSE
Z_INFO
Z_INFOBUFFER
Z_INITBUFFER
Z_NEXT
Z_OK
Z_OPEN
Z_PREVIOUS
Z_READ
Z_REFRESH
Z_SAVE
Z_SAVEAS
Z_SCRATCH
Z_SEARCH

Z_APPLSTART

Starts a dialog with icon-based navigation and displays the entries of the entry level dialog. This command has
no effect on current processing.

Z_CALL

Opens the dialog for direct call from functions and listings. All functions and listings can be started from this
dialog. This command has no effect on current processing.

Z_CANCEL

Closes the current dialog. A confirmation window is optionally possible prior to closing of the dialog, in which
the end user is asked to confirm whether or not modifications are to be applied.

Z_CLEAR

Closes current processing and supplies the dialog elements of the dialog with initial values. This is needed for
initialization of new areas for mass processing.

Copyright © Software AG 200280

Standard CommandsLocal Standard Commands

Z_CLOSE

Closes the current dialog. A confirmation window is optionally possible prior to closing the dialog, in which the
end user is asked to confirm whether or not the modifications are to be applied. In this case, all validity checks
applicable for the dialog as well as for the access layer will be executed.

Z_CONFIRM

Applies the modifications resulting from a maintain dialog and/or subdialogs to the preliminary copies. Prior to
application, any validity checks defined for the dialog are executed. In conjunction with the command
Z_REFRESH, it is possible to save the current processing status so that it can be restored if necessary.
Z_CONFIRM does not result in any modifications to the original data.

Z_EXIT

Closes the entire application. It also activates a timer which is used to invoke the standard command
Z_EXIT_TMR. The combination of these two commands enables a sequential closing of all open dialogs as well
as any required inquiries and key ID entries.

Z_HELP

Invokes the Windows help for the current dialog. If the Help ID is not defined, control is given to the content
overview. This command has no effect on current processing.

Z_HELPCNTNT

Invokes the content overview of the Windows help. This command has no effect on current processing.

Z_HELPUSE

Invokes help information on how to use Windows help. This command has no effect on current processing.

Z_INFO

Displays the information screen for the application. This command has no effect on current processing.

81Copyright © Software AG 2002

Z_CLOSEStandard Commands

Z_INFOBUFFER

Opens a dialog displaying existing initialized data information. This command has no effect on actual
processing.

Z_INITBUFFER

Causes a new initialization of the command data. This command has no effect on actual processing.

Z_NEXT

Closes the current processing and reads the next selected data record.

Z_OK

Accepts possible modifications and closes the dialog.

Z_OPEN

Starts a new function with the same action and object type. This command has no effect on actual processing.

Z_PREVIOUS

Closes current processing and reads the previous data record from the previously selected set.

Z_READ

Closes the current processing and reads a new data record. Depending on the frame, either the key of the current
dialog will be used for reading the data record, or a key ID dialog will be offered.

Z_REFRESH

Removes the modifications resulting from the dialog (and possibly subdialogs). In addition, the dialog elements
are provided anew with the values of the preliminary copies. In conjunction with the command Z_CONFIRM, it
is possible to save the processing status for possible restore as necessary.

Z_SAVE

Applies the modifications to the original data. Prior to application, all validity checks defined for the dialog as
well as for the access layer are executed. If a new record has been added, the key dialog is opened.

Copyright © Software AG 200282

Standard CommandsZ_INFOBUFFER

Z_SAVEAS

Opens a key dialog for input of a new key ID. The actual storage takes place as a result of an internal command
sent from the key dialog to the maintain dialog.

Z_SCRATCH

Deletes the currently displayed data record.

Z_SEARCH

Accepts the user specified selection criteria and starts the corresponding search for data records. Prior to doing
so, all entries in the list box are removed.

83Copyright © Software AG 2002

Z_SAVEASStandard Commands

Internal Standard Commands
Internal standard commands are not defined in the application shell administration system. They are sent to other
dialogs during the processing of a local command using the standard event Z_CMD_EXEC. This is required if
more than one dialog is used during the processing of a command.

An internal command can also invoke multiple additional internal commands in other dialogs.

Z_CANCEL_DLG
Z_CANCEL_KEY
Z_CANCEL_TMR
Z_CONFIRM
Z_CONF_DLG
Z_DATA_MOD
Z_ENTER_SUB
Z_EXIT
Z_EXIT_TMR
Z_GET_DATA
Z_GET_FOCUS
Z_GET_GLOBAL
Z_GET_KEY
Z_INIT
Z_ITEM_ADD
Z_ITEM_DEL
Z_ITEM_MOD
Z_ITEM_NEXT
Z_ITEM_PREV
Z_KEY_MOD
Z_LB_CLICK
Z_LB_DOUBLE
Z_LB_FILL
Z_LB_SELECT
Z_LIST_MOD
Z_MOD_DLG
Z_NAV_ERR
Z_NEW_REC
Z_REFRESH
Z_RESET_DLG
Z_SAVEAS
Z_SELECT_ALL
Z_START_NKEY
Z_START_KEY
Z_START_SAVE
Z_START_SEL
Z_START_SOLO

Z_CANCEL_DLG

Informs the maintain dialog that a subordinate subdialog has been closed.

Copyright © Software AG 200284

Standard CommandsInternal Standard Commands

Z_CANCEL_KEY

Informs the dialog that the key dialog was exited with the command Z_CANCEL.

Z_CANCEL_TMR

Is invoked via a timer event. The timer is activated from frames following a runtime error. Causes current
processing to be interrupted.

Z_CONFIRM

Informs a subdialog that, based on a command in the maintain dialog, the processing of the local command
Z_CONFIRM is to be performed.

Z_CONF_DLG

Informs the maintain dialog that the modifications of a subdialog have been confirmed with the command
Z_CONFIRM.

Z_DATA_MOD

Is invoked by a change or click event for a frame-controlled dialog element. Informs the frames that the dialog
data has been modified. Causes change events for frame-controlled dialog elements to be suppressed, and the
process status of the frame-controlled commands to be activated or deactivated accordingly.

The frames control by default all dialog elements whose change or click event is not suppressed. The
subprograms ZXXCTIGN, ZZXCTKYN and ZXXCTMON can be used to notify the frames that dialog elements
are to be handled in a nonstandard manner.

If the variable LZ_CHECK_MODIFY is set to FALSE, this command will not be invoked.

Z_ENTER_SUB

Is invoked in a subdialog when the subdialog receives the focus. It ensures that the corresponding maintain
dialog is in the background.

Z_EXIT

Corresponds to the local command Z_EXIT.

Z_EXIT_TMR

This internal command is invoked by an activated timer event via the command Z_EXIT. The actual processing
corresponds to the local command Z_CLOSE, with the exception that at the end of processing, the command
Z_EXIT is sent to the entry dialog of the next function.

Z_GET_DATA

Is sent from a modal window to the higher level dialog. It is used to return the processed data.

85Copyright © Software AG 2002

Z_CANCEL_KEYStandard Commands

Z_GET_FOCUS

Informs the dialog that it should activate itself.

Z_GET_GLOBAL

Results in the updating of the global data in this dialog.

Z_GET_KEY

Is sent from a key dialog to the higher level dialog. It is used to transfer the selected key ID.

Z_INIT

Informs the subdialog that a new process is to be initialized.

Z_ITEM_ADD

Whenever this command is sent from a foreign dialog to a browse dialog, the browse dialog adds the provided
data record to the list box. The data are provided to the browse dialog in the array PZ_DATA of the group
PZ_LOCAL. The browse dialog determines the structure of the corresponding list box structure by calling
subroutines Z_UPDATE_ITEM and Z_PASS_KEY.

If the new data record is within the value range of the currently displayed data records of the list box, it will be
added. If not, it will be integrated into the list box provided that the following conditions are met:

End-of-File has been reached and the key of the data record is greater than the highest key in the list box.

The list box is empty and the switch LZ_ADD_ON_EMPTY has been set.

The variable LZ_ADD_EVERY has been set.

Z_ITEM_DEL

Whenever this command is sent from a foreign dialog to a browse dialog, the browse dialog will remove the
corresponding data record from the list box. The data are provided in array PZ_DATA of group PZ_LOCAL.
The browse dialog determines the structure of the corresponding list box structure by calling subroutines
Z_UPDATE_ITEM and Z_PASS_KEY.

Z_ITEM_MOD

Whenever this command is sent from a foreign dialog to a browse dialog, the browse dialog will update the
corresponding data record in the list box. The data are provided in array PZ_DATA of group PZ_LOCAL. The
browse dialog determines the structure of the corresponding list box structure by calling subroutines
Z_UPDATE_ITEM and Z_PASS_KEY.

Z_ITEM_NEXT

Whenever this command is sent from a foreign dialog to a browse dialog, the browse dialog will return the key
ID of the next selected list box entry in the variable PZ_LOCAL.PZ_KEY. The calling dialog can determine via
the variables PZ_LOCAL.PZ_BOD and PZ_LOCAL.PZ_EOD whether or not additional entries exist before and
after the list box entry.

Copyright © Software AG 200286

Standard CommandsZ_GET_FOCUS

Z_ITEM_PREV

Whenever this command is sent from a foreign dialog to a browse dialog, the browse dialog will return the key
ID of the previously selected list box entry in the variable PZ_LOCAL.PZ_KEY. The calling dialog can
determine via the variables PZ_LOCAL.PZ_BOD and PZ_LOCAL.PZ_EOD whether or not additional entries
exist before and after the list box entry.

Z_KEY_MOD

Is invoked by a change or click event for a frame-controlled dialog element. Informs the frames that the key ID
of the dialog has been modified. Causes change events for frame-controlled dialog elements which represent key
ID fields to be suppressed, and frame-controlled commands to be activated or deactivated accordingly.

Z_LB_CLICK

Is invoked from a key and browse dialog whenever the user clicks a list box item.

Z_LB_DOUBLE

Is invoked from a key dialog if the user double-clicks on a list box item. The selected list box item is then
transferred to the corresponding input dialog element and sent to the higher level dialog.

Z_LB_FILL

Is invoked in a key or browse dialog if the user issues a FILL event for a list box.

Z_LB_SELECT

Is invoked in a key or browse dialog whenever a list box item is selected. For a key dialog, this command causes
the data of the selected list box item to be transferred to the input dialog element.

For a browse dialog, the list box selection modification information will be sent to the mass processing dialog (if
active). If no mass processing dialog is active and the switch LZ_START_USER_INPUT is not set, the actions
of subtype Delete, Display, and Modify will be enabled/disabled depending on whether or not list box entries
were selected.

Z_LIST_MOD

Is sent from a listing to the corresponding mass processing dialog. It informs the mass process regarding the
modification of the selection set.

Z_MOD_DLG

Is sent from a subdialog to the corresponding maintain dialog, and informs the maintain dialog that the subdialog
was modified.

Z_NAV_ERR

The erroneous dialog element or subdialog must be determined. Validation in a high level dialog has resulted in
an error condition and the dialog element in which the error was detected is activated.

87Copyright © Software AG 2002

Z_ITEM_PREVStandard Commands

Z_NEW_REC

Causes a browse dialog to send the key ID of the newly selected data record to the corresponding mass
processing dialog.

Z_REFRESH

Corresponds to the local command Z_REFRESH. It is sent from the maintain dialog to its subdialogs whenever
the local command Z_REFRESH is invoked and the variable LZ_MAIN_CONFIRM_ALL is set to TRUE.

Z_RESET_DLG

Causes the modifications in a subdialog to be reset same as with the command Z_REFRESH.

Z_SAVEAS

Informs the subdialog that its processing should be switched to a new key.

Z_SELECT_ALL

In a browse dialog, the command causes all list box items to be selected.

Z_START_NKEY

Is provided during the opening of a dialog to indicate that processing is to be started without a key ID.

Z_START_KEY

Is provided during the opening of a dialog to indicate that processing is to be started with a key ID.

Z_START_SAVE

Is provided during the opening of a key dialog to indicate that a new key ID is to be provided.

Z_START_SEL

Is provided during the opening of a key dialog to indicate that an existing key ID is to be selected.

Z_START_SOLO

Is provided during the opening of a mass processing dialog, to indicate that mass processing is to be started
independent of a browse dialog.

Tracing a Command
For testing purposes, you can display the current command.

 To trace a command

1. Use subroutine Z_INITIALIZE.
2. Move True to LZ_GLOBAL.LZ_CMD_TRACE.

The resulting message box displays the current command.

Copyright © Software AG 200288

Standard CommandsTracing a Command

Customizable Components
Component Description

Z_ACCESS_DATA Read several records

Z_ACTIVATE_PREL_REC Transfer preliminary data into database. Close the transaction

Z_ADD_PREL_REC Add preliminary record

Z_ASSIGN_DEFAULT_KEY Define preliminary key ID for a new object

Z_ASSIGN_INPUT_TO_KEY Transfer the user input into internal variable

Z_ASSIGN_SUBDIALOG Allocate dependent subdialogs to the higher-level dialog

Z_CHECK_EXISTENCE Check existence of a record

Z_CLEAR_INPUT_FIELDS Reset input fields

Z_CMD_EXEC_END Any functionality after execution of a command

Z_CMD_EXEC_START Any functionality before execution of a command

Z_CUSTOM_CMD Execute any individual commands

Z_DELETE Delete record

Z_FILL_DIALOG Fill dialog elements

Z_FILL_ITEM Transfer data base fields into list box

Z_INITIALIZE Start processing

Z_LOCK_RECORD Lock data record

Z_NAVIGATE_ON_ERROR In case of error, set focus to field in error

Z_PASS_KEY Pass key to internal variable

Z_PROCESS_ITEM Process selected item

Z_READ_PREL_REC Read preliminary record

Z_RECEIVE_DATA Take data from modal window

Z_RECEIVE_KEY Take foreign key from key dialog

Z_RETURN_KEY Provide selected value to higher-level dialog

Z_RETURN_PARMS Provide parameters (user buffer) to higher-level dialog

Z_SET_KEY_RANGE Set key range for reading data

Z_SELECT Transfer selected key ID into input fields

Z_UPDATE Modify original data (if working without preliminary records)

Z_UPDATE_ITEM Update the list box using data sent by another dialog

Z_UPDATE_PREL_KEY Update the key ID of the preliminary copies after the ’Save as ...’ command

Z_UPDATE_PREL_REC Update the preliminary copies

Z_VALIDATE Validate user input

89Copyright © Software AG 2002

Customizable ComponentsCustomizable Components

Z_ACCESS_DATA
Read multiple records.

The component usually contains the call to a multiple-object access module. After the call of the multiple-object
access module, the subroutine Z_MR_ACCESS_RESULTS should be called. It sets frame variables based on the
contents of the standard parameter data area of the access module. In addition, the standard error processing of a
multiple-object access module is carried out by it in case of error.

For accesses which do not use the access modules created using the frame gallery, the variable LZ_REC_EOD
must be set to FALSE if further data are present. The number of records found is to be assigned to the variable
LZ_REC_NUM_FOUND.

Z_ACTIVATE_PREL_REC
Transfer preliminary data into the data base.

The component usually contains the call to the frame subroutine Z_ACTIVATE_PREL_STD. From this
subroutine, among other things, the activation module assigned to the variable LZ_ACTIVATE_MODULE in
the component Z_INITIALIZE is called.

You can, if necessary, implement your own activation logic in this component instead of the call to the frame
subroutine.

Z_ADD_PREL_REC
Add preliminary record.

The frame has already preset the operation code and the key ID value for the storing of the preliminary data
record. If you need values other than these, you can assign the appropriate values at the beginning of the
component.

The suggested code of this component is tailored to the layout of a preliminary data record.

If you wish to add further preliminary data records, you can insert the following suggested code at the end of the
component and adapt it accordingly:

 INCLUDE ZXFXESCC /* escape after error
 RESET PZ_XAS000
 PZ_PRELIMINARY_VIEW
 MOVE key TO LZ_STD.LZ_PREL_KEY
 MOVE #ZPL_SAVE TO PZ_AS_OPERATION
 PERFORM new_ACCESS_PREL

Z_ASSIGN_DEFAULT_KEY
Definition of the preliminary key ID when adding a new record.

This component defines the preliminary key ID of a newly added object before it is stored for the first time. It is
possible to assign different values to the key ID displayed in the title line and to the technical key ID.

This component is only called if the variable LZ_USE_DEFAULT_KEY is set to TRUE.

Copyright © Software AG 200290

Customizable ComponentsZ_ACCESS_DATA

Z_ASSIGN_INPUT_TO_KEY
Transfer the user input into the variable LZ_SELECT_KEY.

This subroutine is only called if the variable LZ_START_USER_INPUT is set to TRUE.

Z_ASSIGN_SUBDIALOG
Allocate Natural objects used.

In this component, the Natural object names of the subdialogs to be managed by the frame are made known to it.
In addition, a local command is allocated in a table to each subdialog.

Z_CHECK_EXISTENCE
Check existence of the record to be processed.

The frame has already preset the operation code for the existence checking. If you need another operation code,
you can assign this at the beginning of the component.

The suggested code of this component is tailored to the checking of a data record.

If you wish to check further data records, you can insert the following suggested code at the end of the
component and adapt it accordingly:

 INCLUDE ZXFXESCC /* escape after error
 RESET PZ_XAS000
 PZ_MSG
 MOVE LZ_XA_READ TO PZ_AS_OPERATION
 MOVE key TO P_view.xxx_ID

 CALLNAT ’xxxAS00N’ USING PZ_XAS000 P_view

 PERFORM Z_CHECK_RSP_CHECK_EXIST

91Copyright © Software AG 2002

Z_ASSIGN_INPUT_TO_KEYCustomizable Components

Z_CLEAR_INPUT_FIELDS
Reset input fields.

This component resets the values of all dialog elements and the ’linked variables’ connected to them. It is run
through before the display of data newly read in and also after the command Z_CLEAR.

Z_CMD_EXEC_END
User exit for any processing after execution of a command.

This component is run through after the execution of every command. If necessary, you can code here any
processing that should be run through after a command.

The variable LZ_STD.LZ_CMD_ID contains the command originally invoked, while the variable
LZ_STD.LZ_FRAME_CMD_ID contains the command to be processed by the frame. Using both these
variables, you can control for which command which processing should be carried out.

Z_CMD_EXEC_START
User exit for any processing before execution of a command.

This component is run through before the execution of every command. If necessary, you can code here any
processing that should be run through before a command.

The variable LZ_STD.LZ_CMD_ID contains the command invoked. Using this variable, you can control for
which command which processing should be carried out.

If you want to cause the frame to carry out another standard command instead of the command invoked, you can
assign the required command to the variable LZ_STD.LZ_FRAME_CMD_ID in this component.

Z_CUSTOM_CMD
User exit for commands that the frame does not support.

This component is always run through when a command is invoked that is not supported by the frame of the
dialog affected. The variable LZ_STD.LZ_FRAME_CMD_ID contains the command invoked. Using this
variable, you can control for which command which processing should be carried out.

Z_DELETE
Delete record.

This is handled using either an access module or an activate module. If several data records are to be deleted,
either several access modules or a special activate module is to be called. In case of error, error numbers are to
be allocated to the array PZ_MSG_NUM and the value TRUE is to be allocated to LZ_VAL_ERR. By leaving
the subroutine by ESCAPE ROUTINE, the accompanying error message is output in a message window.

Copyright © Software AG 200292

Customizable ComponentsZ_CLEAR_INPUT_FIELDS

Z_FILL_DIALOG
Transfer the values from the interface of the access module to the dialog elements.

In this component, the variable values in the interface of the access module are transferred into the corresponding
dialog elements and the ’linked variables’ connected to them. For simple ’input fields’, this can be done by a
MOVE BY NAME statement. For complicated dialog elements, such as, control boxes or option buttons, it can
be necessary to code this for each field individually.

Z_FILL_ITEM
Transfer database fields into list box.

Since, in the usual case, more than one data record is read with Z_ACCESS_DATA, the record with the index
LZ_REC_NUM_IND must be transferred into the frame variables LZ_BOX_ITEM and LZ_BOX_ITEM_KEY.

This is most easily handled using a MOVE BY NAME statement. For this, the two variables must be redefined
to include the variables in the parameter data area of the access module.

To transfer the fields into the list box, the subroutine Z_ADD_ITEM must be called. In this way, it is possible in
this subroutine to exclude data records from being transferred into the list box.

Z_INITIALIZE
Initialize processing.

This component initializes variables used. Here you can undertake any individual initialization beyond the
suggested code.

Z_LOCK_RECORD
Lock records.

In this component, you lock the data records to be processed. The suggested code is so laid out that you lock the
data record defined in the variable PZ_LOCAL.PZ_KEY. If you want to lock another data record, you can adapt
the instructions appropriately.

If you want to lock a range of records, you must supply the variable LZ_LOCK_KEY with the beginning and the
variable LZ_LOCK_KEY_END with the end of the range of keys.

If you want to lock several individual records or ranges of records, you can copy the suggested instructions and
adapt them accordingly. With every call of the frame subroutine Z_CHECK_AND_LOCK_RECORD, a record
or a range of records is locked.

Z_NAVIGATE_ON_ERROR
Set focus to field in error or navigate to relevant dialog after an error is detected by the access layer. Head for the
erroneous dialog element or dialog after the appearance of an error in the access layer.

This component contains a DECIDE statement in which, depending on parameters passed from the access layer.
The focus is set to a field in error in the current dialog or the relevant subordinate dialog receives the focus.

93Copyright © Software AG 2002

Z_FILL_DIALOGCustomizable Components

If you use several object views in a dialog, you should embed the DECIDE statement of the suggested code in a
decide statement which checks the object type:

 DECIDE ON FIRST VALUE OF PZ_LOCAL.PZ_ERR_OBJ_ID
 VALUE objecttype 1
 DECIDE ON FIRST VALUE OF PZ_LOCAL.PZ_ERR_FLD_POS
 VALUE
 :
 END-DECIDE
 VALUE objecttype 2
 DECIDE ON FIRST VALUE OF PZ_LOCAL.PZ_ERR_FLD_POS
 VALUE
 :
 END-DECIDE
 :
 END-DECIDE

Z_PASS_KEY
Pass key to internal variable.

Z_PROCESS_ITEM
Carry out processing for selected list box entry. As a rule, this is achieved by calling the subroutine
Z_START_FUNCTION. Alternatively, you can code any special processing.

Copyright © Software AG 200294

Customizable ComponentsZ_PASS_KEY

Z_READ_PREL_REC
Read preliminary data record.

The frame has already preset the operation code and the key ID value to read the preliminary data record. If you
need values other than these, you can assign the appropriate values at the beginning of the component.

The suggested code of this component reads a preliminary data record.

If you want to read further preliminary data records, you can insert the following suggested code at the end of the
component and adapt it accordingly:

 INCLUDE ZXFXESCC /* escape after error
 RESET PZ_XAS000
 PZ_PRELIMINARY_VIEW
 MOVE key TO LZ_STD.LZ_PREL_KEY
 MOVE LZ_XA_READ TO PZ_AS_OPERATION
 PERFORM VIEW_ACCESS_PREL

Z_RECEIVE_DATA
Accept data from modal window.

This component transfers data that were modified and confirmed in a modal window.

If, in a dialog, you receive different data from various modal windows, you must, when calling a modal window,
note in a user-defined identifier which window was opened. When transferring the data into the component
Z_RECEIVE_DATA, this identifier must be tested.

Z_RECEIVE_KEY
Accept foreign key ID from key dialog.

This component accepts foreign key IDs that were selected in a key dialog.

If, in a dialog, you call selection helps for foreign key IDs of different fields, you must, when calling a selection
help, note in a user-defined identifier for which field the selection help was opened. When accepting the key ID
value, depending on this identifier, the appropriate field is to be used.

Z_RETURN_KEY
Check user input for OK in the key dialog.

Validate input fields and transfer them into frame variable LZ_SELECT_KEY.

95Copyright © Software AG 2002

Z_READ_PREL_RECCustomizable Components

Z_RETURN_PARMS
Provide parameters (user buffer) to a higher level dialog.

In this component, the data modified in a modal window can be transferred into the user buffer PZ_DATA.
Subsequently, the modal window passes the user buffer to the higher level dialog. There, the data can be
received in the component Z_RECEIVE_DATA.

Z_SET_KEY_RANGE
Check start-value input and build up start value for multiple-record access module.

Example:

 IF #IF_PLZ.STRING = ’’ /* PLZ must be filled
 MOVE TRUE TO LZ_VAL_ERR /* error
 MOVE 4711 TO PZ_MSG.PZ_MSG_NUM(1) /* message number
 MOVE #IF_PLZ TO LZ_FOCUS /* position on input field
 ESCAPE ROUTINE /* no further processing
 END-IF
 *
 * build up start and end value for access module
 *
 MOVE #IF_PLZ.STRING TO P_PERSONNEL.P_PERS_PLZ_FROM
 MOVE #IF_PLZ.STRING TO P_PERSONNEL.P_PERS_PLZ_THRU
 MOVE #IF_NAME.STRING TO P_PERSONNEL.P_PERS_NAME_FROM

Z_SELECT
Transfer selected key ID into input field.

This component transfers the key ID values of the selected list box entry into the appropriate input fields.

Z_UPDATE
Modify original data.

This component updates the data base according to the user input in dialogs that work without preliminary
records.

Z_UPDATE_ITEM
Update the list box based on a data record sent from another dialog.

The data record is to be transferred from the array PZ_LOCAL.PZ_DATA of the standard PDA ZXXLOC0A
into the appropriate region of the parameter data area of the single-record access module. Afterwards, the
individual fields are transferred into the corresponding fields of LZ_BOX.

Copyright © Software AG 200296

Customizable ComponentsZ_RETURN_PARMS

Z_UPDATE_PREL_KEY
Update the key ID of the preliminary files after the ’Save as ...’ command.

In this component, the preliminary files are read and stored with the new key ID and new processing time stamp
PTS. This is always necessary when the command ’Save as ...’ is executed.

The suggested code of this component processes a preliminary data record.

If, in your function, you process several preliminary data records, you can copy the suggested code of the
component for each further preliminary data record. Additionally, the following suggested code is to be inserted
between the copied suggested codes and adapted accordingly.

 INCLUDE ZXFXESCC /* escape after error
 RESET PZ_XAS000
 PZ_PRELIMINARY_VIEW

 MOVE LZ_DLG.LZ_PTS_OLD TO PZ_LOCAL.PZ_PTS
 MOVE LZ_DLG.LZ_KEY_OLD TO LZ_STD.LZ_PREL_KEY
 MOVE #ZPL_CLOSE TO PZ_AS_OPERATION

Z_UPDATE_PREL_REC
Update the preliminary files.

In this component, values of the dialog elements and the ’linked variables’ connected to them are transferred into
the variables of the interface of the access layer. For simple ’input fields’, this can be done by a MOVE BY
NAME statement. For complicated dialog elements, such as, control boxes or option buttons, it can be necessary
to code this individually.

The frame has already preset the operation code and the key ID value for reading the preliminary data record. If
you need values other than these, you can assign the appropriate values at the beginning of the component.

The suggested code of this component updates a preliminary data record.

If, in your function, you process several preliminary data records, you can copy the suggested code of the
component for each further preliminary data record. Additionally, the following suggested code is to be inserted
between the copied suggested codes and adapted accordingly.

 INCLUDE ZXFXESCC /* escape after error
 RESET PZ_XAS000
 PZ_PRELIMINARY_VIEW
 MOVE key TO LZ_STD.LZ_PREL_KEY
 MOVE LZ_XA_READ TO PZ_AS_OPERATION

97Copyright © Software AG 2002

Z_UPDATE_PREL_KEYCustomizable Components

Z_VALIDATE
Validate user input.

In this component, the user inputs of the current dialog are validated. If necessary, data records referenced
through foreign key IDs can also be read here to display additional information to this.

Copyright © Software AG 200298

Customizable ComponentsZ_VALIDATE

Reusable Components
The frame gallery contains a number of reusable components that can expand the functionality of the generated
dialog. These components are objects which use different Natural object types.

This section describes the object types that are used for each component and how each are called.

Communication with the Command Processor
Communication with the Data Buffer
Starting a Dialog (Application, Function, Listing)
Processing Status of Dialog Elements
Message Window
Date Validation
Numeric Validation

Natural Subprogram: ZXXNC00N
Logical Locking

Communication with the Command Processor
The control and manipulation of commands from application dialogs is performed by the command processor.
Subroutines for communication with the command processor are defined in copy code ZXFXCP0C.

Subroutine: Z_CMD_DISABLE
Subroutine: Z_CMD_ENABLE
Subroutine: Z_CMD_ADD_CTRL
Subroutine: Z_SEND_CMD_PROC
Operation: Z_CMD_CHECK
Operation: Z_CMD_UNCHECK
Operation: Z_CMD_DELETE
Operation: Z_CMD_RENAME
Operation: Z_CMD_REPLACE
Operation: Z_CMD_DIL_REPLACE

Subroutine: Z_CMD_DISABLE

Description

Disables all dialog elements associated to a command.

Parameters

Contained in the local data area ZXXSTD0L

Input/Output Parameter Variable Description

Input LZ_COMMAND Command to be disabled

Example

 MOVE ’Z_MODIFY’ TO LZ_COMMAND
 PERFORM Z_CMD_DISABLE

99Copyright © Software AG 2002

Reusable ComponentsReusable Components

Subroutine: Z_CMD_ENABLE

Description

Enables all dialog elements associated to a command.

Parameters

Contained in the local data area ZXXSTD0L

Input/Output Parameter Variable Description

Input LZ_COMMAND Command to be enabled

Example

 MOVE ’Z_MODIFY’ TO LZ_COMMAND
 PERFORM Z_CMD_ENABLE

Subroutine: Z_CMD_ADD_CTRL

Description

Assigns an additional dialog element (bitmap or push button) to a command.

Parameters

Contained in the local data area ZXXSTD0L

Input/Output Parameter
Variable

Description

Input LZ_CONTROL The handle of the dialog element

Input LZ_COMMAND The command to which the bitmap or push button is to be assigned. For a
push button, the assignment can be omitted (command = value of the
attribute COMMAND-ID)

Example

 MOVE ’Z_MODIFY’ TO LZ_COMMAND
 MOVE #BM-MODIFY TO LZ_CONTROL
 PERFORM Z_CMD_ADD_CTRL

 MOVE #PB-MODIFY TO LZ_CONTROL
 PERFORM Z_CMD_ADD_CTRL
 (attribute STRING from push button is ’Z_MODIFY’)

Subroutine: Z_SEND_CMD_PROC

Description

This subroutine is used to send all other requests to the command processor. The variable LZ_EVENT is used to
indicate the processing to be performed.

Copyright © Software AG 2002100

Reusable ComponentsSubroutine: Z_CMD_ENABLE

Operation: Z_CMD_CHECK

Description

Places a check mark on a menu item associated to a command.

Parameters

Contained in the local data area ZXXSTD0L

Input/Output Parameter Variable Description

Input LZ_COMMAND Command

Example

 MOVE ’Z_CMD_CHECK’ TO LZ_EVENT
 MOVE ’DATE’ TO LZ_COMMAND
 PERFORM Z_SEND_CMD_PROC

Operation: Z_CMD_UNCHECK

Description

Removes check mark on a menu item associated to a command.

Parameters

Contained in the local data area ZXXSTD0L

Input/Output Parameter Variable Description

Input LZ_COMMAND Command

Example

 MOVE ’Z_CMD_UNCHECK’ TO LZ_EVENT
 MOVE ’DATE’ TO LZ_COMMAND
 PERFORM Z_SEND_CMD_PROC

101Copyright © Software AG 2002

Operation: Z_CMD_CHECKReusable Components

Operation: Z_CMD_DELETE

Description

Deletes all dialog elements associated with a command.

Parameters

Contained in the local data area ZXXSTD0L

Input/Output Parameter Variable Description

Input LZ_COMMAND Command

Example

 MOVE ’Z_CMD_DELETE’ TO LZ_EVENT
 MOVE ’SALARY’ TO LZ_COMMAND
 PERFORM Z_SEND_CMD_PROC

Operation: Z_CMD_RENAME

Description:

Assigns all dialog elements for a command to a new command.

The following attributes of the dialog element are also modified:

Menu Item: STRING DIL-TEXT

Tool bar Item: DIL-TEXT BITMAP-FILE-NAME

push button: STRING DIL-TEXT

Bitmap: DIL-TEXT BITMAP-FILE-NAME

Parameters

Contained in the local data area ZXXSTD0L

Input/Output Parameter Variable Description

Input LZ_COMMAND Old command

Input LZ_COMMAND_NEW New command

Example

 MOVE ’Z_CMD_RENAME’ TO LZ_EVENT
 MOVE ’SALARY’ TO LZ_COMMAND
 MOVE ’VACATION’ TO LZ_COMMAND_NEW
 PERFORM Z_SEND_CMD_PROC

Copyright © Software AG 2002102

Reusable ComponentsOperation: Z_CMD_DELETE

Operation: Z_CMD_REPLACE

Description:

Replaces place holder values for all dialog elements of a command name (attribute STRING).

Parameters

Contained in the local data area ZXXSTD0L

Input/Output Parameter Variable Description

Input LZ_COMMAND Command

Input LZ_COMMAND_FILL (1) Value for place holder :1:

Input LZ_COMMAND_FILL (2) Value for place holder :2:

Input LZ_COMMAND_FILL (3) Value for place holder :3:

Example

 MOVE ’Z_CMD_REPLACE’ TO LZ_EVENT
 MOVE ’CALCULATE’ TO LZ_COMMAND
 MOVE ’VACDAYS’ TO LZ_FILL_TXT (1)
 PERFORM Z_SEND_CMD_PROC

Operation: Z_CMD_DIL_REPLACE

Description

Replaces place holder values in DIL-text for all dialog elements of a command.

Parameters

Contained in the local data area ZXXSTD0L

Input/Output Parameter Variable Description

Input LZ_COMMAND Command

Input LZ_COMMAND_FILL (1) Value for place holder :1:

Input LZ_COMMAND_FILL (2) Value for place holder :2:

Input LZ_COMMAND_FILL (3) Value for place holder :3:

Example

 MOVE ’Z_CMD_DIL_REPLACE’ TO LZ_EVENT
 MOVE ’CALCULATE’ TO LZ_COMMAND
 MOVE ’VACDAYS’ TO LZ_FILL_TXT (1)
 PERFORM Z_SEND_CMD_PROC

103Copyright © Software AG 2002

Operation: Z_CMD_REPLACEReusable Components

Communication with the Data Buffer
Global data from the data buffer are contained in the local data area XXGLOBL. A copy of this local data area is
available as a local data area for each application dialog. Subroutines for communication with the data buffer are
defined in the copy code ZXFXCD0C.

Natural Subroutine: Z_GIVE_GLOBAL
Natural Subroutine: Z_UPDATE_GLOBAL

Natural Subroutine: Z_GIVE_GLOBAL

Description

Requests global data from the data buffer. The current data are provided as a local copy in the local data area
ZXXGLOBL.

Example

 PERFORM Z_GIVE_GLOBAL

Natural Subroutine: Z_UPDATE_GLOBAL

Description

The global data is updated in the data buffer and then is distributed to all dialogs of the application. The variable
contents of the local copy of the local data area ZXXGLOBL are transferred to the data buffer.

Example

 MOVE ’Unknown’ TO LZ_GLOBAL.LZ_UNTITLED
 PERFORM Z_UPDATE_GLOBAL

Copyright © Software AG 2002104

Reusable ComponentsCommunication with the Data Buffer

Starting a Dialog (Application, Function, Browse)

External Subroutine: Z_INVOKE_FUNCTION

This subroutine is used to start an application, a function or a browse function within the application.

A function can be started directly using a Function ID or via the combination of Action and Object Type.

Parameters

Group PZ_LOCAL of the parameter data area ZXXLOC0A

Only those parameters which are relevant for the call to a subroutine (reading or writing) are described.
Variables not listed below should not be modified in that they contain parameter data area values which are
required by each dialog.

Input/Output Parameter Variable Description

Input PZ_CMD_ID Command to be executed

Input PZ_CMD_TYPE_MAIN Command main type

Input PZ_ACT_TYPE_CUR Command sub type

Input PZ_CMD_PARM Command parameter

Input PZ_SEL_KEY Key for dialog to be started

Input PZ_KEY_FILLED TRUE key is filled FALSE key is not filled

Output PZ_DLG_NAME Natural name of the dialog

Output PZ_DLG_ID Natural ID of the dialog

Output PZ_RSP Return message value

The parameter PZ_SEL_KEY should only be completed if PZ_KEY_FILLED is set to TRUE. This is only
meaningful when a function or a listing is to be started.

The following sections describe how the parameter variables are to be filled.

Application Start via Command

Parameter Value

PZ_CMD_ID Command ID,
Command must be of the type ’Start an Application’.
Command parameter indicates the Application to be started.

Example

 RESET PZ_LOCAL.PZ_CMD_GROUP
 MOVE ’Z_TOP’ TO PZ_LOCAL.PZ_CMD_ID
 PERFORM Z_INVOKE_FUNCTION PZ_LOCAL
 #DLG$PARENT

105Copyright © Software AG 2002

Starting a Dialog (Application, Function, Browse)Reusable Components

Application Start without Command

Parameter Value

PZ_CMD_TYPE_MAIN LZ_CMD_TYPE_APPL
(constant from local data area ZXX00CL)

PZ_CMD_PARM Application ID

Example

 RESET PZ_LOCAL.PZ_CMD_GROUP
 MOVE LZ_CMD_TYPE_APPL TO PZ_LOCAL.PZ_CMD_TYPE_MAIN
 MOVE ’Z_TOP’ TO PZ_LOCAL.PZ_CMD_PARM
 PERFORM Z_INVOKE_FUNCTION PZ_LOCAL
 #DLG$PARENT

Start Browse via Command

Parameter Value

PZ_CMD_ID Command ID,
Command must be of type ’Start Browse’.
Command parameter indicates the object type for which the listing is to be started.

Example

 RESET PZ_LOCAL.PZ_CMD_GROUP
 MOVE ’LZ_EMPLOY’ TO PZ_LOCAL.PZ_CMD_ID
 PERFORM Z_INVOKE_FUNCTION PZ_LOCAL
 #DLG$PARENT

Start Browse without Command

Parameter Value

PZ_CMD_TYPE_MAIN LZ_CMD_TYPE_OBJ
(constant from local data area ZXX00CL)

PZ_CMD_PARM Object type ID for which the browse is to be started

Example

 RESET PZ_LOCAL.PZ_CMD_GROUP
 MOVE LZ_CMD_TYPE_OBJ TO PZ_LOCAL.PZ_CMD_TYPE_MAIN
 MOVE ’EMPLOYEE’ TO PZ_LOCAL.PZ_CMD_PARM
 PERFORM Z_INVOKE_FUNCTION PZ_LOCAL
 #DLG$PARENT

Copyright © Software AG 2002106

Reusable ComponentsExternal Subroutine: Z_INVOKE_FUNCTION

Function Start via Command

Parameter Value

PZ_CMD_ID Command ID,
Command must be of type ’Start a Function’.
Command parameter indicates the function to be started.

PZ_SEL_KEY Key value

PZ_KEY_FILLED TRUE if key value is submitted

Example

 RESET PZ_LOCAL.PZ_CMD_GROUP
 PZ_LOCAL.PZ_SEL_KEY
 PZ_LOCAL.PZ_KEY_FILLED
 MOVE ’ADM-EMP’ TO PZ_LOCAL.PZ_CMD_ID
 MOVE ’4711’ TO PZ_LOCAL.PZ_SEL_KEY
 MOVE TRUE TO PZ_LOCAL.PZ_KEY_FILLED
 PERFORM Z_INVOKE_FUNCTION PZ_LOCAL
 #DLG$PARENT

Function Start without Command

Parameter Value

PZ_CMD_TYPE_MAIN LZ_CMD_TYPE_FCT
(constant from local data area ZXX000CL)

PZ_ACT_TYPE_CUR Action Type (see local data area ZXX000CL)

PZ_CMD_PARM Function ID

PZ_SEL_KEY Key value

PZ_KEY_FILLED TRUE if key value is submitted

Example

 RESET PZ_LOCAL.PZ_CMD_GROUP
 PZ_LOCAL.PZ_SEL_KEY
 PZ_LOCAL.PZ_KEY_FILLED
 MOVE LZ_CMD_TYPE_FCT TO PZ_LOCAL.PZ_CMD_TYPE_MAIN
 MOVE LZ_CMD_TYPE_ACT_DEL TO PZ_LOCAL.PZ_ACT_TYPE_CUR
 MOVE ’ADM-EMP’ TO PZ_LOCAL.PZ_CMD_PARM
 MOVE ’4711’ TO PZ_LOCAL.PZ_SEL_KEY
 MOVE TRUE TO PZ_LOCAL.PZ_KEY_FILLED
 PERFORM Z_INVOKE_FUNCTION PZ_LOCAL
 #DLG$PARENT

107Copyright © Software AG 2002

External Subroutine: Z_INVOKE_FUNCTIONReusable Components

Function Start via Action Change

Parameter Value

PZ_CMD_ID Command ID,
Command must be of type action
The combination of Action and current object type indicates the function to be started.

PZ_SEL_KEY Key value

PZ_KEY_FILLED TRUE if key value is submitted

Example

 RESET PZ_LOCAL.PZ_CMD_GROUP
 PZ_LOCAL.PZ_SEL_KEY
 PZ_LOCAL.PZ_KEY_FILLED
 MOVE ’Z_MODIFY’ TO PZ_LOCAL.PZ_CMD_ID
 MOVE ’4711’ TO PZ_LOCAL.PZ_SEL_KEY
 MOVE TRUE TO PZ_LOCAL.PZ_KEY_FILLED
 PERFORM Z_INVOKE_FUNCTION PZ_LOCAL
 #DLG$PARENT

Copyright © Software AG 2002108

Reusable ComponentsExternal Subroutine: Z_INVOKE_FUNCTION

Processing Status of Dialog Elements
The frames control the data modification of a function and disable dialog elements in display functions. The
frame controls, by default, all dialog elements which CHANGE events are not suppressed.

The following subprograms may be used to force the frame to control dialog elements in any other way.

Natural Subprogram: ZXXCTIGN
Natural Subprogram: ZXXCTKYN
Natural Subprogram: ZXXCTMON
Natural Subroutine: Z_DIALOG_MODIFIED

Natural Subprogram: ZXXCTIGN

Parameter: HANDLE OF ANY

Description

This subprogram can be used to force the frame to ignore a dialog element, e.g. containing a start value or
controlling the display mode.

Parameters

Input/Output Parameter Variable Description

Input HANDLE OF ANY Handle of dialog element

Example

 CALLNAT ’ZXXCTIGN’ #TB-DISPLAY_ADDITIONAL_INFO

Natural Subprogram: ZXXCTKYN

Parameter: HANDLE OF ANY

Description

This subprogram can be used to mark a dialog element as a key component. The frame interprets any
modification as a modification of the key value. (Only effective in a mass processing dialog).

Parameters

Input/Output Parameter Variable Description

Input HANDLE OF ANY Handle of dialog element

Example

 CALLNAT ’ZXXCTKYN’ #IF-CUSTOMER_ID

109Copyright © Software AG 2002

Processing Status of Dialog ElementsReusable Components

Natural Subprogram: ZXXCTMON

Parameter: HANDLE OF ANY

Description

This subprogram can be used to mark a dialog element as a dialog element. The frame interprets any
modification as a modification of the data to be processed.

Parameters

Input/Output Parameter Variable Description

Input HANDLE OF ANY Handle of dialog element

Example

 CALLNAT ’ZXXCTMON’ #SB-CUSTOMER_TYPE

Natural Subroutine: Z_DIALOG_MODIFIED

Description

Forces dialog status to "modified" in the following frames: maintain, subdialog, modal windows, and
nonstandard dialog.

Parameters

None.

Example

 PERFORM Z_DIALOG_MODIFIED

Message Window
With Windows applications, messages are usually provided in a message window or a status line. The copy code
ZXFXMSGC defines a subroutine which is used to control messages. Message texts are stored in a Natural
message file. Multiple language support as well as modification of messages independent of program logic is
thereby possible.

A message text is constructed as follows:

 text:1:text:2:text:3:text

The place holders :1., :2: and :3: are set dynamically during runtime.

A place holder can occur multiple times in a single message.

A new line within a message is created by entering two colons in succession (::).

Copyright © Software AG 2002110

Reusable ComponentsMessage Window

Natural Subroutine: Z_DISPLAY_MESSAGE

Description

This subroutine is used to display messages in a message window or in a status line of the current window. Up to
3 message texts (one line per text) can be displayed at the same time in a message window.

Parameters

Group PZ_MSG of the parameter data area ZXXMSG0A

Input/Output Parameter Variable Description

Input PZ_MSG_TYPE Message type (see below)

Input PZ_MSG_NUM (3 occurrences) Message numbers

Input PZ_MSG_FILL (3 occurrences) Place holders

Input PZ_MSG_TITLE Optional title for message window

Output PZ_MSG_BUTTON Active buttons for message window

Input PZ_MSG_DLG
(not part of the group)

Handle of parent window Usually #DLG$WINDOW)

The following message types are defined as constants in the local data area ZXX000CL:

Constant Description

LZ_MSG_BUTTON_OK OK button

LZ_MSG_BUTTON_YES YES button

LZ_MSG_BUTTON_NO NO button

LZ_MSG_BUTTON_CANCEL CANCEL button

Example

 Message Text 1500: :1: employees live in :2:

 MOVE ’BERLIN’ TO #CITY

 CITY_FIND.
 FIND NUMBER EMPLOYEES WITH CITY = #CITY

 MOVE LZ_MSG_TYPE_INFO TO PZ_MSG_TYPE
 MOVE 1500 TO PZ_MSG_NUM(1)
 MOVE *NUMBER(CITY-FIND.) TO PZ_MSG_FILL(1)
 MOVE #CITY TO PZ_MSG_FILL(2)
 PERFORM Z_DISPLAY_MESSAGE

Date Validation

111Copyright © Software AG 2002

Date ValidationReusable Components

Natural Subprogram: ZXXDATEN

Parameter Data Area: ZXXDATEA

Description

The subprogram verifies that the input date is a valid date. The input date can be in any of the Natural formats
A10, A8, N8 or D. These formats are all available for the output date following a successful validation.

An alphanumeric date (A10 and A8) is checked according to the current date format.

The following rules apply for input dates of formats A8 and A10:

the year can be omitted
the century can be omitted when specifying the year
leading zeros can be omitted for day and month entries

Parameters

Group PZ_DATE of the parameter data area ZXXDATEA

Input/Output Parameter Variable Description

Input PZ_DATE_FORMAT Date format for alphanumeric input and output date (see
below) (default LZ_FORMAT_DTFORM)

Input PZ_DATE_CONVERT Variable format of input date (see below)

Input PZ_DATE_IGNORE_DELIM Only for alphanumeric input date FALSE: only the seperation
character of date format is permitted (default) TRUE: any
character is permitted as separation character

Input PZ_DATE_CENTURY_LIMIT Only for alphanumeric input date Century limit for 2 position
century input (default = 0)
Year. < Century Limit = 20th C.
Year. >= Century Limit = Current C.

Input/Output PZ_DATE_A10 Date using format A10

Input/Output PZ_DATE_A8 Date using format A8

Input/Output PZ_DATE_N Date using format N8
(YYYYMMDD)

Input/Output PZ_DATE_D Date using format D

Input/Output PZ_DATE_RSP Response Code
0: Date OK
1: Date invalid
2: PZ_DATE_FORMAT invalid
3: PZ_DATE_CONVERT invalid

The valid values for PZ_DATE_FORMAT are defined as constants in the local data area ZXXDATCL.

Copyright © Software AG 2002112

Reusable ComponentsNatural Subprogram: ZXXDATEN

Constant Representation A8 Representation A10

LZ_FORMAT_US MM/DD/YY MM/DD/YYYY

LZ_FORMAT_GERMAN DD.MM.YY DD.MM.YYYY

LZ_FORMAT_EUROPE DD/MM/YY DD/MM/YYYY

LZ_FORMAT_INTERNATIONAL YY-MM-DD YYYY-MM-DD

LZ_FORMAT_DTFORM according to Natural
parameter DTFORM

according to Natural parameter DTFORM

The valid values for PZ_DATE_CONVERT are defined as constants in the local data area ZXXDATCL.

Constant Variable Format for Input Date

LZ_CONVERT_A8 A8

LZ_CONVERT_A10 A10

LZ_CONVERT_N N8

LZ_CONVERT_D D

Example

 MOVE LZ_FORMAT_GERMAN TO PZ_DATE_FORMAT
 MOVE LZ_CONVERT_A10 TO PZ_DATE_CONVERT
 MOVE ’1.3.95’ TO PZ_DATE_A10

 CALLNAT ’ZXXDATEN’ PZ_DATE

Output

 PZ_DATE_A10 01.03.1995
 PZ_DATE_A8 01.03.95
 PZ_DATE_N 19950301
 PZ_DATE_D Natural internal date format

113Copyright © Software AG 2002

Natural Subprogram: ZXXDATENReusable Components

Numeric Validation
Function

To validate and convert numerical values.

Name: ZXXNC00N

PDA: ZXXNC00A

Natural Subprogram: ZXXNC00N

Parameter Data Area: ZXXNC00A

Description

The subprogram validates and converts numerical values.

Parameters

Group PZ_NC_PARMS of the parameter data area ZXXNC00A

Input/Output Parameter Variable Description

Input PZ_NC_OP Operation code

Input/Output PZ_NC_VALUE Value to be processed

Input/Output PZ_NC_BEFORE_DC Length before the decimal character (maximum 27)

Input/Output PZ_NC_AFTER_DC Length after the decimal character (maximum 27)

Input PZ_NC_DC Decimal character

Input PZ_NC_RSP Response codes

Copyright © Software AG 2002114

Reusable ComponentsNumeric Validation

The following operations are defined in local data area ZXXNC0CL:

Operation Description

LZ_NC_CHECK Checks the numerical input value. The value can contain a maximum of one
decimal character.

LZ_NC_GIVE_LEN Supplies the length of the input value (both before and after the decimal
character).

LZ_NC_EXACT_LEN Checks the input value against the corresponding defined length.

LZ_NC_LEN_NO_ZERO Checks the input value against the corresponding defined length, whereby no
leading zeros are allowed.

LZ_NC_FILL_LEADING Fills the input value according to the definition with leading zeros.

LZ_NC_FILL_FOLLOWING Fills the input value according to the definition with trailing zeros (after the
decimal character).

LZ_NC_FILL Fills the input value according to the definition with leading zeros and trailing
zeros (after the decimal character).

Example

 RESET PZ_NC
 MOVE LZ_NC_CHECK TO PZ_NC_OP
 MOVE ’27’ TO PZ_NC_VALUE
 MOVE ’3’ TO PZ_NC_LEN_BEFORE_DC

 CALLNAT ’ZXXNC00N’ PZ_NC_PARMS

115Copyright © Software AG 2002

Natural Subprogram: ZXXNC00NReusable Components

Logical Locking

Natural Subroutine: Z_CHECK_AND_LOCK_RECORD

Description

Determines if a key or key area is locked by another transaction, and, if possible, locks the key or key area.

Parameters

The parameters are contained in the local data area ZXXSTD0L.

Input/Output Parameter Variable Description

Input LZ_LOCK_OBJ_ID Identifier of the object type

Input LZ_LOCK_KEY The key to be locked or the beginning of the key area to be locked

Input LZ_LOCK_KEY_END The end of the key area to be locked

Output LZ_VAL_ERR TRUE: Locking is not possible

If LZ_VAL_ERR has a setting of TRUE, the subroutine also inserts the corresponding error number into the
variable PZ_MSG.PZ_MSG_NUM(1).

Example

 MOVE ’ARTICLE’ TO LZ_LOCK_OBJ_ID
 MOVE PZ_LOCAL.PZ_KEY TO LZ_LOCK_KEY

 PERFORM Z_CHECK_AND_LOCK_RECORD

 IF LZ_VAL_ERR
 BACKOUT TRANSACTION
 PERFORM Z_DISPLAY_MESSAGE
 ELSE
 END TRANSACTION
 END-IF

Copyright © Software AG 2002116

Reusable ComponentsLogical Locking

Background Processes
Background processing can be implemented in situations where processing requirements could cause significant
response time problems during dialog operation.

This is usually the case if a large number of database accesses or other time consuming processing is necessary.

Typical examples of this type of processing are complex deletion procedures, complex calculations or
modifications, which require access to a large number of data records.

Depending on specific requirements, background processes can either be started from an online dialog or from
the computer center.

The background program frame handles parameter transfer from the dialog system, error correction as well as
components to restart background processes in the event of an abnormal termination.

The following functions are provided for the end user:

online monitoring of background program execution;
online display of errors detected during background processing;
restart background processing following abnormal termination.

Background processes which are not implemented with the appropriate background frames cannot use the
features described above.

The following topics are covered below:

General Information
Creating and Maintaining Background Procedures
Invoking Background Processes
Start Background Program from Dialog
Implementing Background Programs
Implementing Computer Center Background Processes

General Information
Background procedures must be defined in the application shell for the background process to which the
background program belongs.

To invoke the background process, the subprogram ZXBG010N is called by the online program. For further
information see the corresponding procedure description.

This subprogram ensures that the parameters are transferred using a control record in a control file. This control
record is identified by a unique key (the timestamp).

The timestamp is passed as a standard parameter to the batch program.

The background process is then submitted to the operating system via a standard interface. The background
procedure is therewith submitted to the operating system from the dialog program. The background program is
then started.

The writing of a control record in the file Z_BG_PARM as well as the starting of the background process are
executed from the subprogram ZXBG010N.

117Copyright © Software AG 2002

Background ProcessesBackground Processes

Therefore, it is necessary to ensure that the parameters are correctly set for the call and that the call to the
subprogram ZXBG010N is coded.

Creating and Maintaining Background Procedures

General

For each background process, operating-system-dependent background procedures are required.

Note:
Background procedures must be created prior to implementing background programs. The parameters for the
background procedures are required during the dialog call to the background process.

Using Administration Functions

The application shell is used to define background procedures.

Use the functions Add Background Procedure, Modify Background Procedure, etc., to create and maintain the
background procedure.

For a full description, see the Natural Application Shell documentation.

Types of Background Processing

A background procedure is not needed for each background process. Instead, the various types of background
processing should be identified and a background procedure for each corresponding type is created.

The following are examples of various types of background processes:

receipt of data from another system;
transfer of data to another system;
copying/deleting/modifying mass volumes of data;
printing of lists;
loading/unloading data.

Copyright © Software AG 2002118

Background ProcessesCreating and Maintaining Background Procedures

Invoking Background Processes

Calling a Background Program from a Dialog

A background program can be started from any dialog.

 To call the background program from a dialog

Enter CALLNAT ’ZXBG010N’ USING PZ_BG_START_BATCH.
This CALLNAT contains END TRANSACTION and BACKOUT TRANSACTION statements.

Note:
When writing programs which update data, you must ensure that the procedure is called at a point at which it
will not adversely affect the transaction logic of the dialog.

Parameter Usage

Both the background program and the background procedure needed for the execution of the background
program require certain parameters. These parameters must be passed by the dialog whenever the subprogram
ZXBG010N is invoked.

The required parameters can be displayed with the application shell function Display Background Procedure.

The parameters for the background program, for example, selection/sort criteria, which are assigned values in the
online program, must also be passed.

Detailed information on these parameters is contained in the procedure description.

119Copyright © Software AG 2002

Invoking Background ProcessesBackground Processes

Start Background Program from Dialog
The subprogram ZXBG010N ensures that at runtime the parameters are transferred to the control file, from
which they can be read by the background program.

Natural Object Name: ZXBG010N

Parameter: ZXBG010A (PDA)

Parameters

Group PZ_BG_START_BATCH of the PDA ZXBG010A.

Copyright © Software AG 2002120

Background ProcessesStart Background Program from Dialog

Input/Output Parameter Variable Description

Input PZ_BG_PTS

Output PZ_BG_RSP 0 - Ok
1 - Background procedure not found
2 - Background parameter not found (restart)
3 - Background parameter not stored
9 - Error during submit call

Output PZ_BG_MSG_NUM

Output PZ_BG_MSG_FILL

Input PZ_BG_DELIM Input delimiter

Input PZ_BG_CLIENT_ID Client ID

Input PZ_BG_US_ID User ID

Input PZ_BG_PSW Password

Input PZ_BG_NAME Background process name or title (if applicable for the
operating system)

Input PZ_BG_LIB Library in which program will run

Input PZ_BG_PGM Program name to be executed

Input PZ_BG_NATPARM Natural parameter module

Input PZ_BG_PRIORITY Priority of the background procedure (if applicable for the
operating system)

Input PZ_BG_ONLINE_LIB Library from which the start of the background process is
invoked

Input PZ_BG_ONLINE_PGM Program to be called to start the background process

Input PZ_BG_FU_ID Function ID

Input PZ_BG_DESCR_LC Description

Input PZ_BG_LA_ID Language ID

Input PZ_BG_LA_NAT_CODE Natural language code

Input PZ_BG_CD_ID ID of the background procedure

Input PZ_BG_PRINTER (1:5) Printer name

Input PZ_BG_WORKFILE (1:5) Work file path and name

Input PZ_BG_SUST_NAME?(1:5) Name of substitution variable

Input PZ_BG_SUBST_VALUES
(1:5)

Content of substitution variable

Input PZ_BG_RESTART Restart indicator

Input PZ_BG_PGM_PARM (1:5) Parameter to be passed to the background program

121Copyright © Software AG 2002

ParametersBackground Processes

Implementing Background Programs
The frame gallery provides three application frames for background processing:

Background program.
Load objects.
Unload objects

These are described in section Application Frames.

This section provides additional information on the use of the background program frame.

Passing Parameters
Logically Locking Data Records
Restart
Error Handling
Setting the Processing Status
Monitoring Program Execution

Passing Parameters

The background program receives a timestamp as an input parameter.

This timestamp is used to read the corresponding control record from the control file Z_BG_PARM. This is a
part of the frame functionality.

The parameters from the online program, for example, selection criteria, are made available. The transfer of
parameters is thereby automatic.

The parameters are available to the background program via the variable LZ_PGM_PARM.

Logically Locking Data Records

Data records can be logically locked by background programs.

This may be necessary, for example, if the data must be modified by the background program, and at the same
time processed by the dialog system.

Locking can also be required for read access. For example, a statistic which is based on certain data values
requires that these data records remain unchanged during execution of the calculation of the statistic.

Locking Data Records

Use the inline subroutine Z_CHECK_AND_LOCK_RECORD to lock individual data records, data areas or
objects, as required within a business application.

After execution of this subroutine, an END TRANSACTION must follow. The program must include the
necessary processing logic.

The parameters are contained in the LDA ZXFBA00L.

Copyright © Software AG 2002122

Background ProcessesImplementing Background Programs

Input/Output Parameter Variable Description

Input LZ_LOCK_OBJ_ID Identifier of the object type

Input LZ_LOCK_KEY The key of the record to be locked, or the beginning of the record
range to be locked.

Input LZ_LOCK_KEY_END The end of the record area to be locked.

Output LZ_VAL_ERR TRUE: Locking is not possible.

If LZ_VAL_ERR has a setting of TRUE, the subroutine also inserts an error number into the variable
LZ_MSG_NUM(1).

Example

 MOVE ’ARTICLE’ TO LZ_LOCK_OBJ_ID
 MOVE PZ_LOCAL.PZ_KEY TO LZ_LOCK_KEY

 PERFORM Z_CHECK_AND_LOCK_RECORD

 IF LZ_VAL_ERR
 BACKOUT TRANSACTION
 PERFORM Z_TERMINATE_PROCESS
 ELSE
 END TRANSACTION
 END-IF

Releasing Data Records

The background program frame does not contain any locking logic. Therefore, if you use the procedure for
locking data records, you must also release the records following completion of processing.

Use the inline subroutine Z_CANCEL_LOCK_RECORD for this purpose.

After execution of this subroutine, an END TRANSACTION must follow. The program must include the
necessary processing logic.

Restart

A background program can be restarted in the event it is terminated abnormally, provided that the portion of the
processing which has been successfully completed must not be repeated.

Restart logic is recommended when:

processing involving data modifications is to be executed, or
extensive list processing is to be executed.

As a prerequisite for implementing restart logic, the restart points must be logged at runtime.

This entry is written immediately prior to execution of an END TRANSACTION statement and is confirmed
together with the data modifications via the END TRANSACTION statement.

Use the inline subroutine Z_STORE_RESTART_DATA to write the restart data.

The call is contained in the background program frame. The data are written following logical transactions to the
file Z_BG_PARM.

123Copyright © Software AG 2002

RestartBackground Processes

The number of transactions following which an END TRANSACTION statement is to be executed can be set
using the variable C#TRANSACTION. The default value for this variable is 99.

Before calling this procedure, the desired restart point, for example, the key value of a database record, must be
provided in LZ_RESTART_DATA(*).

The restart of the abnormally terminated background program is then performed via the application shell. For
further information, see the Natural Application Shell documentation.

With this function you can view/modify existing restart data, and then restart the background process.

The frames of the batch programs ensure that the restart data provided in the variable LZ_RESTART_DATA(*)
are received and are available for restart processing.

Error Handling

Errors which occur during background program execution can be logged. Differentiation between the following
types of errors must be made:

Natural runtime errors
Application errors

Natural Runtime Errors

Natural runtime errors can be detected in the background program with the ON ERROR statement and
automatically displayed in the application shell ’’Maintain Error Log" dialog.

All database modifications which were executed during the current, not yet successfully closed logical
transaction, are backed out of the database and the corresponding logical locks are released. This is a part of the
frame functionality.

Application Errors

Application errors can be handled in various ways:

termination of the background program with an entry in the error log file. The inline subroutine
Z_TERMINATE_PROCESS can be used for this purpose. Error handling is the same as that for Natural
runtime errors.
continuation of the background program with an entry (warning) in the error log file. The inline subroutine
Z_STORE_ERROR_LOG can be used for this purpose. After execution, an END TRANSACTION must
follow. In this case, the program can be closed with the status ’Process has ended with an error/warning’.
This is performed by the frames when the variable LZ_APPL_ERR is set to TRUE.

In each case, these subroutines must be supplied with the variables ZER_USER_DESC(1:4) and
ZER_APPL_ERR_NUM.

Display Error Log

Error logs can be displayed using the application shell function Browse Error Log.

For further information, see the Natural Application Shell documentation.

Setting the Processing Status

A background program is assigned a status when it is started from a dialog. This status can be displayed via the
application shell function Browse Background Process.

Copyright © Software AG 2002124

Background ProcessesError Handling

Terminating a Background Program

Normally the appropriate end status is set whenever the background program is ended. This status can however
be directly set to: ’Process ended with an error/warning’ by setting the variable LZ_APPL_ERR to TRUE.

Termination by Calling another Background Program

If a background program was called from another background program, and control is to be returned to the
calling program, the background status may not be modified.

This can be done by setting the variable LZ_CONTINUE to TRUE.

The last program of the background process will set the status to ENDED.

Monitoring Program Execution

The application shell provides various functions for monitoring background processes. The following
information is provided:

Function Information

Browse Background Process Status of user’s background processes

Browse Error Log Display errors

No access is available to the operating system itself, i.e., direct intervention with executing background
processes is not possible.

125Copyright © Software AG 2002

Monitoring Program ExecutionBackground Processes

Implementing Computer Center Background Processes
No frame is available to implement background programs which are to be started by computer center personnel.

Note:
The background program is not intended for this purpose. It is intended only for the implementation of batch
programs which are to be started from a dialog program.

Error Handling

Natural runtime errors should be handled using the ON ERROR statement.

Monitoring Program Execution

The monitoring of batch jobs (status, restart) is not supported by the application shell.

Copyright © Software AG 2002126

Background ProcessesImplementing Computer Center Background Processes

The Command System
By modifying the data contained in the application shell system files, you can define the behavior and
appearance of systems you develop with the frame gallery. Because this information is stored centrally in files, it
can be easily updated. Handling for multiple-language applications and access protection can be easily
maintained using the administration system provided in the application shell instead of being programmed
explicitly within all dialogs.

The following topics are covered below:

Information Objects and Application Components
Data Buffer
Access Protection
Command Processor
Command Processing Description

Information Objects and Application Components
The following table lists the application components influenced by the specific information objects:

Information Object Application Component Used to Define

Command Menu item Name DIL-text

 Tool bar item Bitmap DIL-text

 Bitmap DIL-text

 Push button Possible Name DIL-text

 Direct Call Name (action)

Object Type Icon-based Navigation Name DIL-text

 Direct Call Name

Function Icon-based Navigation Name DIL-text

 Main dialog for function String

Application Icon-based Navigation Name DIL-text

 MDI-frame String

127Copyright © Software AG 2002

The Command SystemThe Command System

Data Buffer
The most frequently used data are read into main storage at the start of an application, thereby reducing the
number of database accesses to the application shell system files as well as reducing the overall network
overhead.

This storage area (data buffer) is implemented as a transparent background dialog.

In order to access data in the data buffer, dialogs send requests (events) to this background dialog, which
responds via a parameter interface.

The following data are contained in the data buffer:

Information Object Data Fields

Commands (up to 400) Command ID

 Command Type (main and subtype)

 Name

 DIL-text

 Bitmap

 Parameter

Tool bars (up to 70) Tool bar ID (up to 30 tool bar items (commands))

Dialog Types (up to 70) Dialog Type ID

 Tool bar ID

Object Types (up to 250) Object Type ID

Functions (up to 800) Function ID

 Up to 3 actions (command from main type action)

 Object ID

Applications (up to 80) Application ID

Copyright © Software AG 2002128

The Command SystemData Buffer

Access Protection
Access protection is provided at the function level. A function is either permitted or prohibited for a given user.

The access to object types and applications is controlled by the access protection at the function level.

An object type (and its listing) is only permitted if at least one permitted function exists for this object.

An application is only permitted if at least one of its children (application, function, object type) is permitted.

This means that a user can only see what is authorized via the functional access protection. This has the
following implications within an application:

Menu items, tool bar items, bitmaps and push buttons, which are associated with a command, will be
omitted if they are not permitted for a user. Only commands from the main type Action, Application Start,
List Start and Function Start are affected by access protection.

Command Type Prohibited

Action Function is not permitted for current object type and action

Function Start Function is not permitted

List Start Object type is not permitted

Application Start Application is not permitted

Submenus are omitted for which no permitted command exists.
The graphical navigation only offers the applications, functions and object types for selection which are
permitted.
The "Direct Call" dialog offers only object types for which at least one function is permitted.
The "Direct Call" dialog displays only actions (commands from main type action) for which a function for
the selected object type is permitted.

Access protection can be enabled or disabled for an entire application or for individual users.

Access Protection for Application Access Protection for UserCheck Authorization for Functions

Yes Yes Yes

Yes No No

No Yes No

No No No

Undefined users can only start an application if access protection for the application is disabled. Only those
functions are checked for which access protection is enabled. Functions without access protection are available
to all users.

If authorizations for functions are to be determined, the ordering of functions to function groups and the
assignment of function groups to users should be considered. A function group can have permitted and/or
prohibited functions.

This and the access protection defaults for the application thereby provide the set of permitted functions for a
user.

129Copyright © Software AG 2002

Access ProtectionThe Command System

Default Value of the
Application

Set of Permitted Functions

All functions permitted All functions of the application, except those functions which are prohibited via a
function group. Plus those functions which are permitted via a function group.

All functions
prohibited

All functions which are permitted via a function group, except functions which are
prohibited via a function group, plus functions without access protection.

During start-up of the application, all permitted functions are determined based on information in the data buffer.

This in turn determines the permitted object types (see above), which are placed into the data buffer.

Using this information, the application structure is checked and the permitted applications (see above) are placed
in the data buffer.

All commands of the application are read into the data buffer, whereby prohibited commands (Function Start,
Application Start, Object Start) are marked.

Whether or not an action is permitted can only be determined at runtime. The action will be permitted only if the
action and the current object combination referenced in the current dialog is contained in the data buffer.

Copyright © Software AG 2002130

The Command SystemAccess Protection

Command Processor
The command processor is a background dialog which controls the processing of defined commands. Command
are activated via menu items, tool-bar buttons, push buttons, and icons with which a command ID has been
associated.

The dialog communicates with the command processor via events.

During the initialization of a dialog, the following tasks are executed:

If the value of the variable LZ_SECURITY is True, it is checked whether the commands attached to the
dialog elements are permitted. If a command is prohibited, the corresponding dialog elements are deleted.
Depending on the value of the variable LZ_STRING_REPLACE, the STRING- and DIL-attributes are
assigned the corresponding values of the command entries stored in the data buffer.

The tasks below are dialog element specific:

Menu Items

Empty submenus and superfluous separators are removed.

Tool Bar Items

The BIT-MAP-FILE-NAME for the dynamically added tool bar items are read from the data buffer. Superfluous
separators are removed.

If the tool bar items are defined in the dialog editor and a dialog type is assigned to the dialog, the corresponding
tool bar items are added dynamically behind the existing items.

Bitmaps

The BIT-MAP-FILE-NAME is read from the data buffer.

For the application programmer, the command processor is the most significant interface for controlling dialog
elements with command ordering.

If, for example, a command must be disabled, it is only necessary to indicate this to the command processor. The
associated dialog elements are then determined and disabled by the command processor.

131Copyright © Software AG 2002

Command ProcessorThe Command System

The following functions for commands and the associated dialog elements are available:

Function Affected Dialog Element

Enable Menu item, tool bar item, push button, bitmap

Disable Menu item, tool bar item, push button, bitmap

Set marker Menu item

Remove marker Menu item

Rename Menu item, push button

Replace (Attribute String) Menu item, push button

Replace (:n:) position holder

Replace (attribute DIL-TEXT) Menu item, tool bar item, push button,

Replace (:n:) position holder bitmap

Delete Menu item, tool bar item, push button, bitmap

Copyright © Software AG 2002132

The Command SystemBitmaps

Command Processing Description
This section describes the processing of dialog elements which are assigned to a command.

Command processing consists of the following steps:

1. Assignment of commands to dialog elements via the attribute COMMAND-ID.
2. Clicking of a dialog element which is assigned to a command.
3. Retrieval of associated command data via the command processor.

Command Variable

ID LZ_FRAME_CMD_ID

Main type LZ_FRAME_CMD_TYPE_MAIN

Sub type LZ_FRAME_CMD_TYPE_SUB

Parameter LZ_FRAME_CMD_PARM

4. Call to user subroutine Z_CMD_EXEC_START.
Additional processing prior to standard processing is possible here, for example, to change the command.

5. Standard processing Z_CMD_EXEC_FRAME.
Standard processing of the command. If the command cannot be processed by frames, the user subroutine
Z_CUSTOM_CMD is called.

6. Call to user subroutine Z_CMD_EXEC_END.
Additional processing subsequent to standard processing can be performed at this point.

133Copyright © Software AG 2002

Command Processing DescriptionThe Command System

List Box Handling
This section describes how to maintain two list boxes and the communication between them. The first list box
displays a set of objects from which entries can be selected and transferred to the second list box.

List box ALL
Contains all available objects.
Example: All articles required for an order.
List box SELECTED
Contains all objects selected from list box ALL.
Example: All articles selected to create an invoice.

The following topics are covered below:

Prerequisites
Functional Scope of the Frame Modules
Additional User Activities
Integrate Processing into the Dialog

Prerequisites
The following modules for the frame modules are prerequisites for list box processing:

ZXFXLB0C - This copycode contains the general code for the integration of list box processing in a dialog.
ZXFXLB1C - This copycode contains the special-purpose code for the integration of list box processing in
a dialog.
ZXFXLB2C - This copycode contains the general code for the integration of list box processing in a
subprogram.
ZXFXLB0N - This subprogram is the skeleton for the creation of list box processing.
ZXFXLB0L - This local data area contains all variables required by the subprograms for list box
processing.
ZXFXLB0A - Standard parameter data area for list box processing for the subprogram.
ZXFXLB01A - Standard parameter data area for list box processing for list box ALL. In addition, this
parameter data area is the basis for the creation of individual interfaces.
ZXFXLB02A - Standard parameter data area for list box processing for list box SELECTED. In addition,
this parameter data area is the basis for the creation of individual interfaces.

In addition, the access modules and their parameter areas are required to fill and process both list boxes.
Multiple-record access module and the parameter for the object type whose occurrences are displayed in the list
box. For example: Item.

Single-record access module and the parameter for the object type for which selections are carried out. For
example: Invoice.

Functional Scope of the Frame Modules
The following functionality is provided by the frame modules:

Search using a Start Value in List Box ALL.
For the list box ALL, which may have a large number of entries, a start value can be provided. When the
Search button is selected, the list box is displayed beginning with the specified start value.

Copyright © Software AG 2002134

List Box HandlingList Box Handling

Dynamic read for list box ALL.
To minimize the response time for large data volumes, list box ALL is at first not filled with all possible
entries. Instead, the data is dynamically read as required when the user pages downwards within the list.

Analysis of the Selection in list Box ALL.
The following is checked whenever a user selects one or more entries in the list box ALL:

Maximal number selected?
Does list box SELECTED already contain the maximum permitted entries?
If it does, no further selection is possible and the Select button is not activated.
Example: The frame guarantees that no more than 50 items can be selected for one invoice.
Double selection?
Does list box SELECTED already contain the entries selected in list box ALL?
If it does, repeated selection is not possible and the Select button is not activated.
Example: The frame guarantees that each item can be selected only once per invoice.
Selection
All selected entries in list box ALL are transferred to list box SELECTED - if not previously done - by
using the Select button or a double-click on the list box entry.

The following options are available when adding new entries to the list box SELECTED:

Insert in sort sequence.
New entries are inserted in the sorting sequence if the list box was implemented as a sorted list box (Mark
attribute SORTED in the dialog editor).

Insert at end of list.
New entries are added at the end of list, when the list box #LB_SELECTED is not implemented as a sorted
list box (attribute SORTED in the dialog editor is not marked) and the user has not selected an entry in this
list box.

Insert at a specific position within a list.
New entries are inserted at a specific position, when the list box SELECTED is not implemented as a sorted
list box (attribute SORTED in the dialog editor is not marked) and the user has selected an entry in this list
box. In this case, the new entry is inserted before the selected entry.
Remove.
The selected entries in list box SELECTED are removed when the Remove button is selected.

135Copyright © Software AG 2002

Functional Scope of the Frame ModulesList Box Handling

Additional User Activities

Subprogram

Copy the subprogram ZXFXLB0N to subprogram xxxXLB0N and adapt it as described in the suggested code.

Copy the parameter data area ZXFXLB1A to parameter data area xxxXLB1A.

Copy the parameter data area ZXFXLB2A to parameter data area xxxXLB2A.

Copycode

Copy copycode ZXFXLB1C to copycode xxxXLB1C and adapt it as described in the suggested code. Thus the
inline subroutine PROCESS_LISTBOX_xx_yy is created.

Dialog Layout

Create the following graphical elements for a dialog:

List Box ALL

Name HANDLE according to copycode xxxXLB1C.

Mark the attribute MULTIPLE SELECTION if several entries are to be selected at one time.

Call subroutine PROCESS_LISTBOX_xx_yy in the event handlers for CLICK, DOUBLE-CLICK and FILL.

List box SELECTED

Name HANDLE according to copycode xxxXLB1C.

Mark the attribute MULTIPLE SELECTION if several entries are to be selected at one time.

Call subroutine PROCESS_LISTBOX_xx_yy in the event handlers for CLICK and DOUBLE-CLICK.

Search Push button

Assign COMMAND-ID according to copycode xxxXLB1C.

Add Push button

Assign COMMAND-ID according to copycode xxxXLB1C.

Delete Push button

Assign COMMAND-ID according to copycode xxxXLB1C.

Copyright © Software AG 2002136

List Box HandlingAdditional User Activities

Assign Data Areas

In addition, assign the following global data areas and parameter data areas:

ZXFXLB0A
xxxXLB1A
xxxXLB2A

Include Copycode

Place copycode xxxXLB1C in the AFTER ANY event of the dialog.

Integrate Processing into the Dialog

Subroutine Z_INITIALIZE

Add the following line:
INCLUDE ZXFXLB4C

Subroutine Z_FILL_DIALOG

Add the following lines:
INCLUDE ZXFXLB3C
PERFORM PROCESS_LISTBOX_xx_yy

Subroutine Z_CUSTOM_CMD

Call subroutine PROCESS_LISTBOX_xx_yy for commands Search, Add, and Delete

Subroutine Z_UPDATE_PREC_REC

To re-transfer data from list box SELECTED to the respective access module parameter data area, add the
following lines at the respective position:

MOVE LZ_LB_RETURN TO PZ_LISTBOX.PZ_OPERATION

PERFORM PROCESS_LISTBOX_xx_yy

137Copyright © Software AG 2002

Integrate Processing into the DialogList Box Handling

Creating Object Views
With Client/Server technology, it is increasingly important that data access is encapsulated in an object-oriented
manner. In addition to enabling simple data access to be switched from one computer to another, this
modularization offers the following benefits:

Each access must be coded only once.
An access operation, when available and tested, can be eliminated as a source of error.
All object operations are located in a clearly defined place
Database changes result in minimum modification in easily locatable places.
An access operation can be used wherever it is required within a system.
When naming conventions are adhered to, required access operations are easily found.

The following topics are covered below:

Concepts
Natural Objects Associated with an Object View
Implementing Single-Object Access
Implementing Multiple-Object Access
Implementing Access to Preliminary Copies
Object View Implementation

Concepts
All database accesses are encapsulated in object views. The set of object views for an application builds the
access layer for the application. The associated "object orientation" makes it possible to distribute data using a
Client/Server approach.

In an object view, all database operations, for example, Store, Update, etc. are implemented for an object on
which they can be used.

The term "Object" refers to a group of business data which logically belongs together. An object corresponds, in
its simplest form, to an entity identified during requirement analysis.

Complex objects can, however, represent a structure of entities which have relationships with each other.

Copyright © Software AG 2002138

Creating Object ViewsCreating Object Views

A simple example of this is the object Order composed of the object Orderheader and the object Order position:

Order

An operation on an object is not implemented in a program directly as a database access. Rather, an access
module associated with the object view is called with the appropriate parameters. The database access is then
executed by the access module, and the results of this operation are returned to the executing program.

The activation and confirmation of data modifications is performed by an application subprogram (activation
module). This module performs the transfer of preliminary data to the original data as well as the confirmation of
the data update.

For further information, see section Transaction Logic.

The code of the activation module confirms successful modification with an END TRANSACTION statement or
in case of an error condition, backs-out the transaction with the BACKOUT TRANSACTION statement. For
distributed databases, it must be ensured that these statements are also applied to all relevant databases.

Besides database access, all necessary validations for data consistency and security are carried out by the access
modules of the object views. This is done before any access to a database takes place. This is to ensure that these
checks are always carried out regardless of the origin of the call.

Due to the different interfaces (with a single object only one object is passed back, while with multiple objects,
several objects are passed back) used for processing single and/or multiple objects, at least two access modules
are created for each object, i.e. one for single- and another for multiple-object processing.

Access modules are implemented as subprograms, and required data is supplied in parameter data areas.

139Copyright © Software AG 2002

ConceptsCreating Object Views

Natural Objects Associated with an Object View
When an object view is created using the frame gallery, the following Natural objects are produced:

Object View Info

Contains information collected during the process of creating the object view, which is used later when creating
dialogs which use the object view. The data is held in an internal format and can be viewed when the Info button
is selected in the "Frame Gallery" dialog window.

Object View LDA

Contains the Natural view of the object and a start key definition used by the multiple object access module.

Constants LDA

Contains constants defining (1) the number of blocks of A100 used in the single object parameter data area; (2)
the number of objects to be retrieved by each call to the multiple object access module; (3) a position number for
each field in the object view local data area; (4) optionally, additional object-specific operation codes.

These are not automatically included but can be added manually. For further information, see Starting the
Inplementation.

Single Object PDA

Contains the call interface for the single object access module.

Multiple Object PDA

Contains the call interface for the multiple object access module.

Preliminary Copies Copycode

Contains code for use by dialogs which use preliminary copies.

Single Object Subprogram

Encapsulates operations for accessing and modifying single objects.

Multiple Object Subprogram

Encapsulates retrieval operations for retrieving multiple objects.

Preliminary Copies Subprogram

Transfers updates made to preliminary copies to the database.

Copyright © Software AG 2002140

Creating Object ViewsNatural Objects Associated with an Object View

Implementing Single-object Access
All database operations that read or change an object’s data are implemented in one of the access modules
belonging to that object. This object data can be composed of fields from various DDMs, which together build a
logical object. Before the execution of an operation in an access module, the required consistency checks are
executed.

Access Module Structure

The structure of a single object access module is shown below:

The frame gallery produces a single-object access module which includes standard operations for READ, GET,
STORE, UPDATE, DELETE and CHECK_EXISTENCE. Additional operations can be added manually using
the subprogram editor.

141Copyright © Software AG 2002

Implementing Single-object AccessCreating Object Views

Creation of Consistency Checks

The single-object access module produced by the frame gallery includes checks to ensure that parameters
required by the standard operations are passed. Any further consistency checks and validations must be coded
manually.

All required validations for data consistency checks are executed before the database modifications take effect.

These checks are collected in an inline subroutine similar to the following:

DECIDE ON EVERY VALUE OF Operation

 VALUE Operation1, Operation2, ...
 Consistency checks

 VALUE Operation1, Operation3, ...
 Consistency checks

 VALUE Operation5, ...
 :
 :

 :
 :
 NONE
 Set error indication

 END-DECIDE

Checks for multiple operations can be combined through the use of the statement DECIDE ON EVERY
VALUE.

If the consistency checks contain database accesses to other objects (e.g. external key checks), then the access
module calls an access module belonging to the other object’s object view to carry out the database access. This
procedure is necessary to allow data distribution.

To minimize communication overhead with distributed data storage, it may be desirable to perform certain
checks during dialog processing. Nevertheless, these checks should also be included in the object view.

The checks do not, however, have to be coded more than once.

You can stipulate that only validation, but no modifying database accesses are executed by the access module,
with the switch PZ_AS_VALID_ONLY.

It is also possible for certain field-specific checks, for example; check for numerical content, to be copied from
the access module and directly coupled with the corresponding input field in for example the ’Change’ event.

Copyright © Software AG 2002142

Creating Object ViewsCreation of Consistency Checks

Application Program/Object View Interface

The interface between application programs and access modules contains various types of data:

object independent data;
object dependent data.

Object Independent Data

Parameters that are the same for every object are included here, and are defined in the parameter data area
ZXAS000A. In particular, the following data is included:

IN: Operation code (PZ_AS_OPERATION)
The standard operation codes used by the application shell are contained in the local data area ZXA0000L.
Additional operation codes can either be hard coded in the program or defined as constants in a local data
area. Suggested code is included in the constants local data area, produced for an object view by the frame
gallery.

IN: Validation flag (PZ_AS_VALID_ONLY)
Indicates that only validation is to be carried out.

IN: Language position (PZ_AS_LANG_POS)
IN/OUT: ISN of the record that will be or was read (PZ_AD_ISN)
OUT: Error information

Response code (PZ_AS_RSP)
Existence of record. If the record exists the flag is set to 1 (PZ_AS_REC_EXIST)
Message number (PZ_AS_MSG_NUM)
Additional message information (PZ_AS_MSG_FILL)
Position number of the field in error in the view (PZ_AS_FLD_POS)
Index of the field in error for arrays (PZ_AS_FLD_OCC)

OUT: Runtime information
Natural error code number ((PZ_AS_NAT_ERROR)
Natural program line in which error occurred (PZ_AS_NAT_LINE)
Natural object name (PZ_AS_NAT_PROG)

When using an SQL access module, an additional standard local data area ZXA000QL is required.

Object Dependent Data

For the single-object access module, three sets of object-dependent data are required and are produced by the
frame gallery during object view creation:

an local data area containing the Natural view.
a single object parameter data area which includes a copy of the Natural view, as a group containing all or a
subset of the fields of a complete view. It differs from the Natural view structure in that all structure
definitions are omitted.

Only elementary fields are defined. Higher level fields are excluded.

This is done for the following reasons:

The danger that errors will occur on parameter transfer is eliminated.
Type conversion would otherwise not function properly with distributed data storage.
Only essential fields are transferred.

143Copyright © Software AG 2002

Application Program/Object View InterfaceCreating Object Views

This parameter data area is used both in the access module and in the application programs.

Additional object dependent data, for example constants for field positions and object specific operation codes
are also defined in a local data area (the constants LDA).

Additional Object Dependent Data

Any additional object dependent fields and parameters should be defined in a separate parameter data area.

Error Handling

For error handling, the following applies:

A position number is assigned as a constant for each field of the object view local data area. The necessary
code is generated in the constants LDA.
Each input field is assigned a field position within the dialog.
If multiple views are affected, a view ID must be used to identify the view containing errors.
If an error occurs in the access module, then the error number and the position number of the view field in
error is returned. For arrays the indices for these marked errors are also returned.

If, for example, when deleting an object, additional reference checks are necessary, it is recommended to include
in the error text the name of the object in which the object to be deleted is a foreign key.

Copyright © Software AG 2002144

Creating Object ViewsError Handling

Implementing Multiple-Object Access
Note:
This functionality is automatically generated.

In principle, all database operations which read more than one object record are implemented in an access
module belonging to the object.

These "records" can be composed of fields from various DDMs, which together form a logical object.

The object view for multiple-object processing does not, as a rule, contain database accesses that change the
data.

The access module returns a definable number of objects. The maximum number of supplied objects is defined
in the index of the arrays of object fields found in the interface local data area and/or parameter data area of the
application program.

If a block of records is returned, then the starting value of the next block to be read is also returned
automatically. As a result, unlimited numbers of records can be read sequentially.

Because no accesses change data, the execution of consistency checks is not required.

Structure of the Multiple-Object Access Module

The structure of a multiple-object access module is as follows:

The frame gallery produces a multiple-object access module which includes standard operation for LIST and
GET_SET. Additional operations can be added manually using the subprogram editor.

Checking

In a multiple-object access module, checking is restricted to the required input parameters for control of the
access module.

145Copyright © Software AG 2002

Implementing Multiple-Object AccessCreating Object Views

Application Program/Object View Interface

The area of communications between application programs and access modules contains various types of data:

Object Independent Data
Object Dependent Data

Object Independent Data

Parameters that are the same for every object are defined in the parameter data area ZXAM000A. The following
is included:

IN: Operation code (PZ_AM_OPERATION)

The standard operation codes used by the application shell are defined in the local data area ZXA0000L.
Additional operation codes can either be hard coded in the program or defined as constants in a local data area.
Suggested code is included in the constants LDA, produced for an object view by the frame gallery.

IN: Number of required objects (PZ_AM_CNT_REC_NEEDED)
IN/OUT: Number of objects found (PZ_AM_CNT_REC_FOUND)
OUT: Status information

Response code (PZ_AM_RSP)
EOD flag, is set, when END OF DATA (PZ_AMEND_OF_DATA).

OUT: Runtime information
Natural error code number ((PZ_AM_NAT_ERROR)
Natural program line in which error occurred (PZ_AS_NAT_LINE)
Natural object name (PZ_AM_NAT_PROG)

Object Dependent Data

For the multiple-object access module, two sets of object-dependent data are required and are produced by the
frame gallery during object view creation:

a local data area containing the Natural view (also used by the single-object access module). This local data
area also includes a definition for a single start key.
a multiple-object parameter data area which includes an array containing a copy of the Natural view, as a
group which includes all or a subset of the fields in the Natural view. This definition differs from the
Natural view structure in that all structure definitions are omitted. Only elementary fields are defined.
Higher level fields are excluded.

A pair of start/thru values and a minimum value are defined for the selected search key for the object view. By
default, these are used to read a range of records. For a composite key, you can include additional code to treat
each component as containing independent start/thru values.

Additional start/thru values for further search keys can be added manually.

Additional selection criteria can also be defined in the parameter data area. With distributed data storage, it may
be desirable to carry out all selections on the computer which holds the data.

This parameter data area is used as both in the access module as well as locally in application programs.

Error Handling

Errors will only occur if an invalid parameter (unknown operation code, invalid/ missing start value) or a call in
the multiple-object access module to the single-object access module involving database updates is detected.

Copyright © Software AG 2002146

Creating Object ViewsApplication Program/Object View Interface

Error information passed by the single-object module to the multiple-object module must be passed on by the
multiple-object module to the application program.

Error handling is performed in the same way as outlined above for the single-object access module.

Implementing Access to Preliminary Copies
The frame gallery produces two Natural modules to handle access to preliminary copies for an object view. A
copycode contains the object type specific access to the preliminary records. An activation module transfers the
preliminary data to the original data.

For further information on the use of preliminary copies, see Preliminary Copies.

Copycode for Access to Preliminary Copies

For access to preliminary copies, a copycode is created for each object. This copycode issued in the maintain
dialogs and subdialogs, as well as in the corresponding activation module.

A modified version of this copycode is produced if the single-object parameter data area contains more than
4000 bytes.

Activation Module

The preliminary copies subprogram produced by the frame gallery can be modified as required.

If you do not want to use the predefined operation codes in the object view, you can specify the desired operation
code using the following MOVE statement subsequent to the call of subroutine
Z_INIT_PARMS_ACCESS_ORIGINAL:
MOVE <operation-code> TO PZ_AS_OPERATION

147Copyright © Software AG 2002

Implementing Access to Preliminary CopiesCreating Object Views

Object View Implementation

Starting the Implementation

The object view which builds the access layer should be implemented as early as possible. The earliest possible
point of time is upon completion of the database design.

Undoubtedly, not all operations can be implemented so early. Experience has shown that requests for additional
operations arise during implementation. However, it should be possible to implement all standard operations.

The frame gallery automatically generates an object view which includes the actions READ, GET, STORE,
UPDATE, DELETE, CHECK_EXISTENCE, LIST and GET_SET.

Object View Creation

Procedure

The procedure described here assumes that the access modules do not need to call access modules for further
object views.

If this is not the case, see Object View Creation for Complex Objects.

Create the object view using the frame gallery (see Creating an Object View).

When object-specific operations are required complete the following:

Add all object-specific operation codes, which are individually valid for this object, and are not already in the
standard local data area for operation codes to the local data area.

Assign initial values for operation codes in ascending order, beginning with 51 in the above mentioned local data
area with the object-specific contents.

Implement the individual operations in the available suggested code DECIDE structure in the multiple- or
single-object access modules.

Code the appropriate VALUE statement, and insert the essential coding.

For reasons of clarity, it is recommended that individual operations are placed after standard operations.

Test the object view.

Use:
for single-object access, the skeleton program ZXFAS00P
for multiple-object access, the skeleton program ZXFAM00P

If later, during the implementation phase, additional operations are required, then check that the operation codes
have already been defined. If not, define the new operation codes, and implement them in the access modules.

Copyright © Software AG 2002148

Creating Object ViewsObject View Implementation

Additional Information Concerning Multiple-object Access

With multiple-object access, three repositioning parameters can be used to delimit which records are to be read.
These are:

Start-value. Specifies the first record to be accessed (with the first read). When the access module has read
as many objects as are to be returned by a single call to the module, it sets the start key to the next object to
be read. When the access module is next called, it starts from this new start value.
Thru-value. Specifies the last record to be accessed. Not set by dialogs produced using the frame gallery.
Minimum-value. Not set by dialogs produced using the frame gallery.

A minimum value field is included in the multiple-object parameter data area but the access module does not
include suggested code and the minimum key field is not used by dialogs generated using the frame gallery. You
can add code to use the minimum value as follows.

The minimum value can be set to indicate that the components of a composite key are to be treated as
independent search criteria. Before the first call to the access module, the minimum value is set to the start value.

For each key component, all objects with a value lower than that specified as the minimum value are ignored.

Example

Start-value:

Client ID Customer ID Retailer ID

BB Carey Bell

End-value:

Client ID Customer ID Retailer ID

DD Zackery McCalls

The first access will begin with the Start-value. The first 10 occurrences are placed in the parameter data area
and the 11th occurrence is marked as the next start-value. If additional objects are required, the next access will
begin with the 11th occurrence. This procedure is repeated until either the end-value is reached or no additional
objects are required.

If the following Minimum-value is used, the number of objects returned is further reduced:

Client ID Customer ID Retailer ID

BB Andrews Bell

For client ID CA, for instance, only objects with a Customer ID greater or equal to Carey and a Retailer ID
greater or equal to Bell will be returned.

149Copyright © Software AG 2002

Object View CreationCreating Object Views

Object View Creation for Complex Objects

 To create object views for complex objects which contain other objects

1. Generate an object view for each individual object.
Make sure that an object view for the lowest object in the hierarchy is implemented first.

2. In each access module that needs access to the lowest hierarchical object, code a call to the access module
belonging to this object.

A hierarchical calling structure of access modules, matching the logical structure of the object, results.

Size Problem Solution

Size problems in an application program could be caused by the following:

too many or too large data areas accessed in the program, resulting in a program which cannot be stowed, or
total size of data areas is too large at run time due to nested calls to modules.

Because the object view concept suggests only one object view per object, for all fields in that object, problems
of size can be solved by reducing the data areas in the application program.

There are two initial solutions:

Solution 1 - Data Areas in the Application Program too Large to Stow

If the data areas in the application program are too large, then the problem can be solved by reducing the size of
the data areas in the application program.

 To reduce the size of the data area in the application program

1. Encapsulate the call to the access module in an additional subprogram, which can be used as a type of
"intermediate layer".

2. Define the interface between the application program and "intermediate module", so that only the data
actually used by the application program is passed.

The intermediate module contains the "complete" interface for the object view.

Communication between the application program and the access module is no longer direct, instead the data in
the intermediate layer is filtered. Through this method the number of object views for an object is reduced.

Copyright © Software AG 2002150

Creating Object ViewsObject View Creation for Complex Objects

Solution 2 - Total Size of Data Areas at Runtime too Large

 To reduce the size of the data areas at run time

Create object views that include only interface fields which are actually used by the application program.

Take care in particular that not too many object views are created. Experience has shown that a "small"
additional object view, containing the most frequently used data is sufficient.

This object view can be used in all application programs and/or access modules which only require the reduced
data area.

151Copyright © Software AG 2002

Size Problem SolutionCreating Object Views

Calling the Access Modules

Note:
The frame gallery automatically generates these calls.

Access modules are invoked in the following manner:

CALLNAT <Access Module Name>
 USING <Standard Parameter>
 <Object View Fields>
 <Additional Parameters> (optional)

Standard
Parameters

For single-object modules: PZ_XAS000 For multiple-object modules: PZ_XAM000 This
enables the control parameters for the access module to be transferred.

Object View
Fields

Enables the group name of the view fields from the data area which contains the object fields
of the view: P_viewname

Additional
Parameters

These parameters contain all information which in addition to the standard parameters and
the view fields must be passed to the access module, e.g. selection or sorting criteria.
Using additional information is optional.

Error Handling

An error check should be made after calling the access module.

When using a single-object module, it is sufficient to check the variable PZ_AS_RSP.

The check for multiple-object modules is combined with a REPEAT loop.
This REPEAT loop is used when the number of database accesses makes a screen output necessary. It can also
be used when the records returned by the access module require further filtering by the application program
which must read call the access module more than once, e.g. to display a large number of objects in a list box.

The error check for the multiple-object module takes place within this REPEAT loop.

This call has the following structure:

REPEAT
 Call to the Access Module
 Error check
 END-REPEAT

Copyright © Software AG 2002152

Creating Object ViewsCalling the Access Modules

Single-object Processing with the Multiple-object Module

If the application program already uses multiple-object access for an object, and single-object access is required,
it is not necessary that a single-object object view, with accompanying data areas, be additionally implemented
in the application program.

A single-object can also be read by a multiple-object module:

Set the parameter PZ_AM_CNT_REC_NEEDED to 1, and then activate the multiple-object module in the usual
manner.

Due to the large size of the data area for a multiple-object module, this approach is only practical when
multiple-object access is already used in the application program.

Note:
The subset of fields available with the multiple-object access module may differ from that available via the
single-object access module, depending on how you created the object view using the frame gallery.

Reading Sequentially using the Multiple-object Module

Sometimes further filtering of the records, which are returned from the multiple-object module, is necessary in
the application program.

If, this is the case, proceed as follows:

Code the secondary selection check inside the REPEAT loop to call the access module after the error enquiry.

Remove the rejected records from the transfer buffer, and move the remaining records together

Count the number of rejected records.

Subtract the number of rejected records from the value in the variable PZ_AM_CNT_REC_FOUND.

Repeat this loop process.

In this way, the rejected records are replaced. The start value for the next call to the access module is set by the
access module during its previous call to the record following the last record it read.

153Copyright © Software AG 2002

Single-object Processing with the Multiple-object ModuleCreating Object Views

Data Storage and Data Access
This section provides information and guidelines regarding data storage and data accesses.

Where relevant, alternative approaches are presented. All techniques can be combined with the use of the frame
gallery production frames. Specific components or suggested codes which support a given alternative are also
described.

The following topics are covered below:

Terminology
Concepts for Data Storage
Time Stamped Data
Histories
Multiple Control
Logical Deleting
Multilingual Applications
Access Paths
Structuring Physical Files
Synchronizing Competing Accesses

Terminology
Adabas C terminology is used throughout this chapter. The chart below displays the equivalent SQL
terminology.

Adabas Terminology SQL/Adabas D Terminology

File Table

Record Row

Data record

Field Column

Descriptor Index Primary key

Super descriptor Named Index
(key with several parts)

READ SELECT

READ(1) SELECT SINGLE
SELECT DIRECT

Copyright © Software AG 2002154

Data Storage and Data AccessData Storage and Data Access

Concepts for Data Storage
Some business requirements influence not only the logic of the business functions but also the data storage.

To allow for these requirements, in certain circumstances, technical fields in addition to the fields for business
data must be inserted into the entities.

The following sections describe some of the possible requirements, including the necessary modifications or
extensions to the entities or files.

Time Stamped Data
Histories
Multiple Control
Logical Deleting
Multilingual Applications

The implementation of the functions for processing these data is not described in this section.

Time Stamped Data

General

If there is a requirement to be able to process data for a key value dependent on particular periods, without
modifying the data contents of other periods, then the data must be stored and processed in dated form.

Such data are only valid for a particular period. Since the defined periods for a key value cannot overlap, the
whole data over all defined periods yields a life cycle of the "data record" for a key value.

Definition:

An entity is time stamped if, for each key value, several occurrences of a descriptive attribute can exist, where
each occurrence is identifiable by a distinct period which does not overlap with another period. This guarantees
that, at any point in time, only one value of a descriptive attribute exists.

Accordingly, a data record which contains an account status is not a time stamped data record, since the value
of the account is only valid for exactly one point in time. The date, in this case, is a business content.

There are many models for utilizing the concept of time stamping for data storage and processing. The
requirements that call for the use of a time stamping model can, in spite of their complexity, be summarized in a
few words:

The object must have a life cycle.
The life cycle may or may not have gaps.
Data from past or future periods is viewed from a given point in time, and can be modified or not.
The limits of the periods are milliseconds, seconds, minutes, hours, days, and so on.

155Copyright © Software AG 2002

Concepts for Data StorageData Storage and Data Access

Time Stamping Concept Recommendation

The following time stamping concept is a recommendation for data storage of time stamped objects as well as
access to the data from business functions.

The concept supports the following requirements:

The data record has a life cycle which has either a defined end or can extend to "infinity".
Gaps in the life cycle are allowed.
Pre-time stamping, that is, processing the data for a period that at the time of processing is not yet valid, is
allowed.
Post-time stamping, that is, processing the data for a period that at the time of processing is no longer valid,
can optionally be implemented.
The limits of the periods are days, that is, the smallest possible definable period is one day.
Frame gallery time stamping relates to the whole object, it is not field related.

If an entity contains time stamped and unstamped descriptions, then the division of the entity into one time
stamped and one unstamped is to be considered.

Data Storage

For each time stamped object, one physical data record is stored for each period in the database.
The data structure is extended by two fields that contain the start and end dates of the period.
Each period is identified through a combination of specialized key and start date.
To simplify the read access, the time stamp values are stored in complementary form with its
complementary value "999999...9 - date". The exit time stamp must be in the format N12 of the Natural
variable *DATX.

 To prepare an entity for dating

1. Insert the following fields:
xxx_EFD_INV (N12) effective-from-date (complementary)
xxx_ETD_INV (N12) effective-to-date (complementary)

2. Define the superdescriptor for the access:
xxx_KEY (...), consisting of
xxx_specialized_key and
xxx_EFD_INV

3. If the entity contains secondary keys, define for each secondary key a further superdescriptor in the form:
xxx_KEY_SEC (...), consisting of
xxx_secondary key and
xxx_EFD_INV

Access to Time Stamped Data

Data accesses are basically through a superdescriptor xxx_KEY or xxx_KEY_SEC.

The frame gallery philosophy to always encase data accesses in so-called access modules is also valid for time
stamped data.

The suggested codes for implementing accesses to time stamped data are contained in the skeleton modules for
creating access modules. The appropriate skeletons are identified by the suffix ’PE’, for "Period effective".

The following standard operations are typical:

Reading a Period

Copyright © Software AG 2002156

Data Storage and Data AccessTime Stamping Concept Recommendation

A physical data record is read using a key value and a date. The date is provided in complementary form. Using
the value provided as from-date, the data record is read using a READ(1) (see following example).

Example:

For article number 4711, the following periods exist (represented in the form YYYYMMDD):

Art.Nr.
4711
4711
4711
4711

Valid from
19930101
19930401
19930516
19930901

Valid to
19930330
19930515
19930831
unlimited

Physically, the values are represented in the form "9999..9 - date":

Art.Nr.
4711
4711
4711
4711

Valid from
80069898
80069598
80069483
80060098

Valid to
80069696
80069484
80069168
00000000

The date is 02/05/93 with the complementary value 80069497. Using this date, the start date is accessed. By
using the access READ(1), the next highest value is read.

Result of read access: 80069598 - which is the equivalent of 01/04/93.
With this, the validity period is identified. The date exists in the period 01/04/93 to 15/05/93.

Existence Checking on Key Value

A read access READ(1) with key value and date "infinity", complementary value "0", is used. This results in a
record found, if one exists with the specified value.

Adding a New Key Including a Period

The data record is stored with key value including start and end date in complementary form.

Modifying the Data of a Period

The descriptive attributes of the data record are modified, without modifying start or end date.

157Copyright © Software AG 2002

Time Stamping Concept RecommendationData Storage and Data Access

Modifying the Limits of a Period

Depending on the kind of modification and the specialized requirements, quite varied activities can be necessary:

Overlapped Periods. All periods except the modified period itself, which are completely overlapped by the
modification of a period are deleted.

Partly Overlapped Periods. Already existing periods which are partially overlapped as a result of a time
period modification are automatically shortened.

The existing period which is impacted by new Start Date of the modified period is:

End date of old period = start date of the modified period minus 1 day.
New end date of the impacted period is prior to its current end date.

The existing period impacted by the new End Date of the modified period is:

Start date of the old period = end date of the modified period plus 1 day.
New start date of the impacted period is after its current start date.

Fixing the New Limits

The limits of the period being processed are adjusted correspondingly.

Example:

Existing period:

1 01st May - 31st May

2 01st June - 15th June

3 16th June - 17th August

4 18th August - 20th September

Period to be modified: 01st June - 15th June

New limits: 15th May - 01st September

To delete: 16th June - 17th August

To modify: 01st May - 31st May -> 1st May - 14th May (new end date)

18th Aug. - 20th Sept. -> 2nd Sept. - 20th Sept. (new start date)

Result:

1 01st May - 14th May .

2 15th May - 01st Sept.

3 02nd Sept. - 20th Sept.

Adding a New Period for a Key

Overlapped Periods. All periods completely overlapped by the new period are deleted.
Partly Overlapped Periods. All partly overlapped periods are shortened, as described in the section:
Modifying the limits of a period.

Copyright © Software AG 2002158

Data Storage and Data AccessTime Stamping Concept Recommendation

Adding a new period. A new data record, with the limits given, is added.

Deleting a Period

Overlapped periods. All periods that are completely overlapped by the deleted period are deleted.
Partly Overlapped Periods. All partly overlapped periods are shortened, as described in the section:
Modifying the limits of a period.

Example:

Existing periods:

1 01st May - 31st May

2 01st June - 15th June

3 16th June- 17th August

4 18th August - 20th September

Period to be deleted: 15th May - 01st September

To be deleted: 01st June - 15th June
16th June - 17th August

To be modified: 01st May - 31st May
18th Aug. - 20th Sept.

->
->

01st May - 14th May
02nd Sept. - 20th Sept.

Result: 01st May - 14th May
02nd Sept. - 20th Sept.

Deleting a period

The data record is deleted.

Deleting a key

All data records belonging to a specialized key are deleted. For this, a READ access is used with start value
key-value and start-date equals "infinity",complementary-value ’0’. This results in all affected data records to be
found.

159Copyright © Software AG 2002

Time Stamping Concept RecommendationData Storage and Data Access

Histories
Histories are used when every data modification must be logged.

With every data modification, the original data record is retained. It is merely identified as historical. The
modified data record is recorded as a copy of the original record including the modification as a "valid" record in
the data content. Every historical record must contain the time of the modification, to be able to find out the
chronological order of the modifications.

The concept of keeping histories can be implemented in various ways. The use of this concept affects the data
modelling and also the implementing of the specialized functions affected.

In the remainder of this section, three ways of keeping histories are described:

Histories in the original file with validity identifier.
Histories in the original file with additional key.
History keeping in a separate file

Histories in the Original File with Validity Identifier

In this way, all data records that have become historical by modification are kept in the original file. To separate
the historical data from the current, a validity identifier is introduced.

Access to the current data is only through the combination of validity identifier and specialized key. Access to
historical data is through a separate key.

Data Storage

For logging the modification time, the entity is extended by a field which is used to enter the time stamp of the
modification time. For this, the format N20 is provided. To guarantee the uniqueness of the time stamp, the value
of the Natural system variable *TIMESTMP (B8) is used as modification time. It can be completely portrayed in
N20.

If the need exists to read all historical data in a chronological order independent of the specialized key, the time
stamp must be defined as key value.

Additionally, a validity identifier is introduced and a combined key is constructed from validity identifier and
specialized key.

Finally, a history key for access to the historical data is built as a combination of specialized key and time stamp.

Copyright © Software AG 2002160

Data Storage and Data AccessHistories

 To prepare an entity for history keeping

1. Insert the following fields:
xxx_PTS_HIST (N20) time stamp of modification (Processing Time Stamp)
xxx_ACTIVE (N01) validity identifier (Active Flag)
Important:
The validity identifier must, in any case, be added with null-value suppression.

2. Define the superdescriptor for the access to current data:
xxx_KEY (...) consisting of:
xxx_ACTIVE and
xxx_specialized_key

3. If the entity contains secondary keys, define for each secondary key a further superdescriptor in the form:
xxx_KEY_SEC (...) consists of:
xxx_ACTIVE and
xxx_secondary_key

4. Define the superdescriptor for the access to historical data:
xxx_KEY_HIST (...) consisting of:
xxx_specialized_key and
xxx_PTS_HIST

5. If the entity secondary key must be read through the historical data, define for each secondary key a further
superdescriptor in the form:
xxx_KEY_SEC_HIST (...) consisting of:
xxx_secondary_key and
xxx_PTS_HIST

Accesses

Reading a valid data record
Access is through the superdescriptor xxx_KEY with start value specialized key and validity identifier 1
(historical records have validity identifier 0).
Existence checking of a valid data record
According to specialized requirements, an unsuccessful read access to valid data must follow an access to
historical data, to find out whether a key was already used at some time in the past.
Adding a valid data record
The record is stored with validity identifier 1.
Modifying a valid data record
The modifications are on a copy of the original data record. The copy can be stored in a temporary store or
as historical record in the original file (then access to the copy must be through the time stamp).
After finishing the modifications, the original record is copied and provided with validity identifier 0 and
the current time stamp. Then the modifications are brought into the old original record. All finishing
activities are completed within one database transaction.
Deleting a valid data record
Deleting data records is, as a rule, not usual when using a histories concept. Should a deletion still be
required, the validity identifier of the original record is merely set to 0 and the current time stamp entered.
Reading a historical data record
Access is through the superdescriptor xxx_KEY_HIST with start value specialized key and required time
stamp.
Adding a historical data record
See section Modifying a valid data record.
Modifying a historical data record
Modification of historical records is, as a rule, not usual.
Deleting a historical data record
The physical deletion of individual historical data records is not usual. Historical data are, as a rule, only
removed from the data content in the course of archiving.
Access can then, according to requirement, be either through the time stamp xxx_PTS_HIST or through the

161Copyright © Software AG 2002

Histories in the Original File with Validity IdentifierData Storage and Data Access

history key xxx_KEY_HIST.
Usually, at a particular point in time, all historical data records that are older than a particular date are
archived. For this, the time stamp xxx_PTS_HIST is used.

Histories in the Original File with Additional Key

In this way, all data records that have become historical by modification are kept in the original file. To separate
the historical data from the current, an additional key for the historical specialized key is introduced.

Accesses to current data are through the valid specialized key. Access to historical data is through the separate
historical specialist key.

Data Storage

For logging the modification time, the entity is extended by a field which is used to enter the time stamp of the
modification time. For this, the format N20 is provided. To guarantee the uniqueness of the time stamp, the value
of the Natural system variable *TIMESTMP (B8) is used as modification time. It can be completely portrayed in
N20.

If the need exists to read all historical data in a chronological order independent of the specialized key, the time
stamp must be defined as key value.

Moreover, an additional field is inserted which matches the specialized key in format and length.

Finally, a history key for access to the historical data is built as a combination of specialized key and time stamp.

 To prepare an entity for history keeping

1. Insert the following fields:
xxx_PTS_HIST (N20) time stamp of modification (Processing Time Stamp)
xxx_ID_HIST (...) historical specialized key (Format and length = specialized key)

2. If the entity contains secondary keys through which there must be access, define for each secondary key a
further field in the form:
xxx_ID_SEC_HIST (...) historical secondary key (Format and length = secondary key)

3. Define the superdescriptor for the access to historical data:
xxx_KEY_HIST (...) consisting of:
xxx_ID_HIST and
xxx_PTS_HIST

4. Define the superdescriptor for the secondary keys:
xxx_KEY_HIST_SEC (...) consisting of:
xxx_ID_HIST_SEC and
xxx_PTS_HIST

Accesses

Accesses through the specialized keys are not affected.

All accesses to historical data are through the key xxx_KEY_HIST or xxx_KEY_SEC_HIST.

Remarks on these accesses are to be taken from the previous section.

History Keeping in a Separate File

This approach results in a complete separation of the valid from the historical data. All historical data are kept in
a separate entity.

Copyright © Software AG 2002162

Data Storage and Data AccessHistories in the Original File with Additional Key

This construct presupposes no technical fields in the file for the original data. The history file is an image of the
original file, where additionally, for the purpose of chronologically sorting the historical data records, a time
stamp is maintained which indicates the time of the history.

Data Storage

To store the historical data, a separate entity is added, which has exactly the same structure as the original.

Additionally, a time stamp is added as field, to document the modification time of a data record. This time stamp
is defined as a descriptor or, as required, as part of a superdescriptor from specialized key and time stamp.

 To prepare the data structures for history keeping

1. Add a file that has the same field structure as the original file.
According to requirement, descriptor definitions can be dropped.

2. Insert the following field:
xxx_PTS_HIST (N20) time stamp of modification (Processing Time Stamp)

3. Define this field as descriptor if there is a need to read all data of the file in chronological order.
4. Define the superdescriptor for the access to historical data:

xxx_KEY_HIST (...) consisting of
xxx_specialized_key and
xxx_PTS_HIST

5. If the entity contains secondary keys through which the historical data must be read, define for each
secondary key a further superdescriptor in the form:
xxx_KEY_SEC_HIST (...) consisting of:
xxx_secondary_key and
xxx_PTS_HIST

163Copyright © Software AG 2002

History Keeping in a Separate FileData Storage and Data Access

Accesses

Reading a valid data record
Not affected.
Existence checking of a valid data record
According to specialized requirements, an unsuccessful read access to valid data must follow an access to
historical data, to find out whether a key was already used at some time in the past.
Adding a valid data record
Not affected.
Modifying a valid data record
The modifications are on a temporary copy of the original data record.
After the modifications are finished, the contents of the original record including the current time stamp are
transferred into the history file. Then the modifications are brought into the original record.
All further activities are completed within one database transaction.
Deleting a valid data record
The deletion of data records is, as a rule, not usual when using a history concept.
If a deletion is still required, then a copy of the original with the current time stamp is transferred into the
history file and the original is deleted.
Access to historical data is analogous to the method used in the previous section, however, with the
difference that another file or user view is accessed.

Copyright © Software AG 2002164

Data Storage and Data AccessHistory Keeping in a Separate File

Multiple Control
From a business area perspective, certain data modifications must be confirmed before being used.

The number of necessary confirmations depends upon specialized requirements. Usually, one additional
confirmation is enough (double-review principle).

In rare cases, the triple-review principle is used. For this, 2 additional confirmations are necessary.

Data modification and each confirmation are, as a rule, carried out by different people.

The use of this concept must be considered both with the design of the entity and also with the function structure.

There are various ways of implementing this concept. The spectrum ranges from very simple to very complex.

Complex Variant

The following complex variant, which is user friendly, is not however described below in general terms:

There is an entity that contains all information about the processing state of all affected data records. Here,
not only are the current states recorded, but also the entire processing history is noted, with specialized key,
status, processor and time of processing.
There is a further entity, that contains all status info that are necessary for a specialized entity.
Finally, there is an entity that contains information about which user can process which data record in which
status and, if the data record must be further processed, to whom appropriate information must go.

For all entities, appropriate maintenance functions must be generated.

With this variant, the specialized entities remain untouched. Before each access to a specialized data record,
there are accesses to the status files.

Simple Variant

A very simple variant would be the following, which is described in detail:

To each specialized data record, a status field is allocated.
Additional fields for logging the last processor and the date of processing can be added.

Data Storage

The state of a data record is documented with the help of a status field. The status field contains information
about the progress of processing, such as, "added","checked once", "approved" and "declined".

As required, additional data fields are to be provided for the user who carries out an activity and the time that the
activity is carried out.

 To prepare an entity for the multiple review principle

1. Insert the following fields:
xxx_STATUS (A01) status field
xxx_USER (A08) last processor
xxx_PTS (N20) time stamp of last processing

2. Define the superdescriptor for access to the data in dependence on its status:
xxx_KEY_STAT (...) consisting of:
xxx_STATUS and
xxx_specialized_key

3. If the entity contains secondary keys, define for each secondary key a further superdescriptor in the form:

165Copyright © Software AG 2002

Multiple ControlData Storage and Data Access

xxx_KEY_SEC_STAT (...) consisting of:
xxx_STATUS and
xxx_secondary_key

Accesses

All accesses to the entity are through a superdescriptor

xxx_KEY_STAT or
xxx_KEY_SEC_STAT

The remaining processing, such as, modifying or deleting, is dependent on the specialized requirements.

Copyright © Software AG 2002166

Data Storage and Data AccessSimple Variant

Logical Deleting
In order that data previously deleted can be recreated, it must not be physically deleted, but only logically
deleted.

Various solutions are possible. With the most comprehensive, the data are provided with a history, where the
data only have a history in the case of a logical deletion. The data structure here matches that for complete
history.

In the following, a simpler method is introduced. Here only the last content of the data to be logically deleted is
stored. In the case of a recreation of the data, the data record is simply "activated" again.

Data Storage

The data structure is extended by a validity identifier. For access to valid data records, again a superdescriptor is
defined. Access to deleted data is through the specialized key.

 To prepare an entity for the logical deleting

1. Insert the following field:
xxx_ACTIVE (N01) validity identifier (Active Flag)

2. Define xxx_ACTIVE null-value suppressed.
The field will contain 0 when the record is logically deleted.

3. Define the superdescriptor for access to the valid data:
xxx_KEY (...) consisting of:
xxx_ACTIVE and
xxx_specialized_key

4. If the entity contains secondary keys, define for each secondary key a further superdescriptor in the form:
xxx_KEY_SEC (...) consisting of:
xxx_ACTIVE and
xxx_secondary_key

Accesses

All accesses to valid key values are through a superdescriptor xxx_KEY or xxx_SEC_KEY. Accesses to
logically deleted data are through the specialized key.

Reading a valid data record
Access is through the superdescriptor xxx_KEY with start value specialized key and validity identifier 1
(logically deleted records have validity identifier 0).
Existence checking of a valid data record
According to specialized requirements, an unsuccessful read access to valid data must follow an access to
logically deleted data, to find out whether a key was already used at some time in the past.
Adding a valid data record
The record is stored with validity identifier 1.
Modifying a valid data record
Not affected.
Logically deleting a valid data record
The active identifier is set to 0.

167Copyright © Software AG 2002

Logical DeletingData Storage and Data Access

Physically deleting a valid data record
Deleting data records is, as a rule, not usual when using logical deletion. Should a deletion still be required,
reading and deleting is then through the specialized key.
Reading a logically deleted data record
Access is through the specialized key. Through this, a logically deleted or a valid data record can be found.
The identification of a logically deleted record is through further selection: xxx_ACTIVE must be 1.
Adding a logically deleted data record
See section Deleting a valid data record.
Modifying a logically deleted data record
Not usual.
Deleting a logically deleted data record
Deleting logically deleted data records is, as a rule, not usual. This deleting is, in general, only done with
physical deletion of a valid data record.
Recreating a logically deleted data record
The xxx_ACTIVE identifier is set to 1.

Copyright © Software AG 2002168

Data Storage and Data AccessAccesses

Multilingual Applications
Many applications must be available in multiple languages. For this, first the interface (dialogs and command
language) must be prepared in multiple languages. Also on the data level, entities will be identified that contain
multilingual elements.

Language-dependent data elements of an entity are frequently identified in the design phase. As a first step, it
must be decided whether the multilingual fields are to be left in the data structure or whether a separate entity
that contains the multilingual fields will be generated.

Using a Separate Entity

The new entity contains all language-dependent fields of the data structure. In addition, a language field is
inserted.

Use this variant only when a doubling of the number of read accesses when accessing language-dependent fields
is justifiable.

Data Storage

 To define the structure of the language-dependent entity

1. Define per language-dependent field a field of the same format and same length as the original:
xxx_Field (A..)

2. Define all key values that are used to read language-dependent data in the language-dependent entity:
xxx_ID (...)

3. Define additionally a field with the form:
xxx_LANG (N01) language code of the language considered
Take the language codes from the frame gallery table Language. Use the content of the field xxx_ID.

4. Define per key value of the original entity a superdescriptor of the form:
xxx_KEY consisting of xxx_LANG and xxx_ID
In rare cases, it can be sensible to turn round the fields of the superdescriptor and so have the key value in
front.

Accesses

All accesses to the specialized object are performed by two real accesses:

Access to the language-independent data,
Access to the language-dependent data.

Accesses to the language-dependent data are always through a key of the form xxx_KEY.

169Copyright © Software AG 2002

Multilingual ApplicationsData Storage and Data Access

Language-Dependent Fields in the Entity

With this variant, language-dependent and language-independent fields are held in one data structure. Naturally
such structures require a special design.

Data Storage

There are numerous possibilities for portraying language-dependent fields. The "right" design can, however, only
be selected depending on the context.

In the following, only the variants "multiple field" and "periodic group" are represented.

Multiple Field
The storage of language-dependent data as multiple field is recommended when there is a small number of
multiple-language fields per record and when the field must be a descriptor or part of a superdescriptor
through which there must be sequential reading.
One occurrence of a multiple field is used per language.
To enable direct access to a particular occurrence of the multiple field, a byte (N1) is placed before the
actual field content.
The byte contains the frame gallery language position of the language to which the field content belongs.
The multiple field is therefore one place longer than the original field:
Define then per language, instead of the language-dependent field, a multiple field:
xxx_LFIELD(A..) = language_position (N1) + field(A..)
When defining the structure, take note of the maximum possible physical record length. It must not be
exceeded.

Periodic group
The portrayal of language-dependent fields in a periodic group can only be used when none of the fields is
used as a key value or part key.
A language-dependent field content is put in the occurrences of the periodic group that matches the frame
gallery language position (LZ_LANG_POS in LDA ZXXGLOBL).
Define then a periodic group that contains all language-dependent fields that are not used as key or part key:
xxx_LANG_FIELDS (9)
xxx_FIELD 1 (A..)
:
xxx_FIELD n (A..)
With frame gallery, 9 languages are available.
When defining the structure, take note of the maximum possible physical record length. It must not be
exceeded.

Copyright © Software AG 2002170

Data Storage and Data AccessLanguage-Dependent Fields in the Entity

Accesses

When you are reading through a key value, descriptive language-dependent data can be taken without problem
from the occurrence that matches the frame gallery language position.

Reading accesses are only possible when using multiple fields.

In the following, only access to multiple fields is considered:

Taking out language-dependent attributes
The language-dependent field content must always be taken through an intermediate field that is redefined
analogous to the data field into language and original field.

Reading through a language-dependent key
Access is through the multiple field xxx_ID with required language position and specialized key.

Sequential read access to language-dependent key
When sequentially reading through multiple fields, there is generally the problem of being able to
immediately identify the last data record of a language. Therefore special break-off conditions must be
formulated within the read loop:
xxx_FIELD (language) LT Start_value
xxx_FIELD (language) LE #OLD_xxx_FIELD
If no start value was given, the first value in the language should be established by a HISTOGRAM
statement with an end condition.
#OLD_xxx_Field Value last time through read loop
Adding a language-dependent field
When first adding the record that contains the multi-language field, the occurrences for all other languages
defined in the system are also to be added, to avoid the multiple fields pushing together and the consequent
destruction of the direct access path. For this, only the language position is filled and the actual field content
stays blank.

171Copyright © Software AG 2002

Language-Dependent Fields in the EntityData Storage and Data Access

Access Paths
In addition to the access paths using a descriptor or superdescriptor, there are accesses that require certain
preconditions to lead to a result simply and with good performance.

These access paths are described below.

Sequential Reading through Nonunique Key
Upper/Lower Case

Sequential Reading through Nonunique Key

Nonunique key fields, usually names, can cause problems in the paging logic.

To avoid this problem when reading, all keys that are not unique by nature are made unique with the help of
additional fields.

For a nonunique key, a superdescriptor is defined which consists of the nonunique key and one of this data
record’s unique identifying fields (for example, the identifying key).

The nonunique key must not always be taken completely into the superdescriptor. As a rule, the first 15 to 20
characters are enough.

 To extend the entity

Define for each nonunique secondary key a superdescriptor:
xxx_KEY_SEC unique secondary key consisting of:
xxx_NAME (1-10) bytes 1-10 of the name
xxx_ID specialized key
When no nonsequential accesses are required, the nonunique key need not be defined as a descriptor. All
sequential accesses are then through the superdescriptor.

Upper/Lower Case

Frequently, alphanumeric values, for example, names, should be included on the dialog and also displayed in
upper and lower case.

If this is a key value, through which there must be access, storing in upper and lower case can have the danger
that the value sought may not be found because, for example, during entry an upper case letter was accidentally
entered in the middle of the key.

This problem can be avoided as follows:

The field value is stored twice, once in upper and lower case and once only in upper case.
As key for reading, the value stored in upper case is used, the value in upper and lower case is only used for
display.

This procedure requires the insertion of an additional field into the entity.

Copyright © Software AG 2002172

Data Storage and Data AccessAccess Paths

 To extend the entity

Define for each key value that must be displayed in upper and lower case an additional field.
xxx_CODE_UC specialized key in upper case
This field is added as descriptor. The field that contains the value in upper and lower case is defined as
descriptive attribute.

Read accesses are always through xxx_ID_UC. Modifications of the field content must be made in both fields.

173Copyright © Software AG 2002

Upper/Lower CaseData Storage and Data Access

Structuring Physical Files
Note:
This section can be skipped if you use SQL since the SQL database design uses a "flat" file structure.

When creating Adabas C files, there are the following possibilities:

translating one entity from the requirements analysis 1:1 into one physical file,
defining several entities in one physical file.
The entities are arranged one behind another in the physical file.

The preferred method for an entity can be determined from the context.

For example:

number of data elements,
expected data volume,
expected access and modification frequency,
logical associations of the entities.

An entity with a large number of data elements, high expected data volume, and extremely high likelihood of
modification is certainly to be represented as its own physical file.

On the contrary, several smaller entities can be put together in one physical file to reduce the number of physical
files.

The following rules should be observed:

The entities are placed one behind another in the file. At the beginning of a new entity, a corresponding
comment is inserted in the PREDICT file description.
Mixing of data elements from different entities is not allowed.
One field is basically not used by two different DDMs, to avoid influence of the DB designs on the program
logic.
This is also not done if the field content is the same. A field per DDM is always added, see the following
example:
physical file

* * View ABCD *

ABCD_ID
ABCD_NAME ! DDM for ABCD
ABCD_FIELD1 !

* * View EFDH *

EFGH_ID
EFGH_NAME ! DDM for EFGH
EFGH_FIELD1

READ physical or READ BY ISN on the DDMs of such a file is to be avoided, since the ISNs of the other
DDM of this file would also be read.

Copyright © Software AG 2002174

Data Storage and Data AccessStructuring Physical Files

Synchronizing Competing Accesses
The following topics are covered below:

General
Use of Locking Concepts
Pessimistic Locking Concept
Optimistic Locking Concept
Organizational Locking Concept
Processing Without Locking Concept

General

Concepts for synchronizing competing accesses are, in general, needed when the possibility exists that data
records could be modified at the same time by several users or programs.

Various concepts can be used to avoid this problem.

These concepts extend from purely organizational measures, through checking for data modifications during the
processing time to active locking of data records, as soon as the data records to be processed are identified.

A selection of these concepts is described below. All concepts can be used when implementing specialized
functions on the basis of the frame gallery production frames.

Use of Locking Concepts

Locking concepts are used in the case of competing updating. Display functions usually do not require the use of
a locking concept.

Use a locking concept, if:

several users per dialog function could modify the same data records at the same time;
parallel with the dialog service, batch programs are running that modify data;
evaluations are being made that require a defined state of the basic data;
data that serve as a basis for the current processing of data but must not be modified during the processing.

Important: Decide on one locking concept per entity.

The use of various locking concepts on one entity will lead to difficulties with the implementing of the
specialized function or even lead to data inconsistencies.

More reasonable for implementing and maintenance of the application is the use of one locking concept for all
data that are processed in the application.

175Copyright © Software AG 2002

Synchronizing Competing AccessesData Storage and Data Access

Pessimistic Locking Concept

Concept

As soon as a data record is identified for processing, a lock is written for this data record. This lock remains until
the close of the logical transaction. In this time, no other user can modify the data record.

This Naturally presupposes that, after the identification of a key value, there will first be a check whether the
data record is already reserved for another user. If this is the case, then access to the data record is rejected.

The pessimistic locking concept is supported by the frame gallery production frames and suggested codes. If,
when implementing, you do not depart from the suggested codes, pessimistic locking is automatically
implemented.

The pessimistic locking concept is the "safest" and, for the end user the most comfortable of the concepts
represented here.

Operation

From the viewpoint of pessimistic locking, a transaction looks as follows:

1. identification of the data record.
2. checking whether a lock already exists.

if yes, the access is rejected.
if no, a lock is written.

3. data modification.
4. transaction end: the lock is removed.

For each further data record that is identified for modification during the running transaction, a lock can, if
necessary, be written. All locks are removed at the end of the logical transaction.

Data Storage

No particular measures are necessary.

Determining the Data to be Locked

Besides individual data records, key areas or entire objects can be locked. This is part of the frame gallery basic
functionality.

Note:
When using frame gallery, the primary key is locked. Any additional keys must be manually locked with
subroutine Z_LOCK_RECORD.

Which data key in which specialized function must be locked, must be decided from the specialized context.

Copyright © Software AG 2002176

Data Storage and Data AccessPessimistic Locking Concept

Frequently, it is not necessary to lock every individual data key that is processed in a specialized function:

Entire objects should be locked when the majority of the data records in a specialized function is modified
or else must not be modified during the running transaction, as, for example, happens from time to time in
batch programs.
Key ranges should be locked when, at the beginning of the transaction, it is already clear that precisely these
ranges are affected by the processing.
Individual keys should be locked when the affected key values can only be identified one after another.
Keys should not be locked when they are stored in a tree-like structure, whose root object is already locked
and there is no possibility of otherwise accessing these hierarchically subordinate data keys.

Application

This approach guarantees that even very time-intensive logical transactions can be successfully closed. Once a
transaction has begun, the data are reserved until the end of the transaction.

The approach is therefore especially suitable for dialog systems, since even specialized functions, which run
through a large number of dialogs can not be destroyed during processing by other users or transactions.

Even in parallel use of dialog and batch functions, the approach is very suitable. The two types of functions
cannot conflict with one another.

177Copyright © Software AG 2002

Pessimistic Locking ConceptData Storage and Data Access

Optimistic Locking Concept

Concept

Note:
Frame gallery does not generate optimistic locking concept. It must be manually implemented.

Every data record contains a time stamp that documents the time of the last modification.

As soon as a data record is identified for .processing, the time stamp of the original record is saved in a
temporary store, in general in the GDA.

At the close of the logical transaction, before the transfer of data, there is a check whether the time stamp in the
original record has been modified.

If the time stamp in the original record was not modified, the transaction is closed in an orderly way.

If the data record, however, was modified, data transfer is terminated and the modifications of this transaction
are lost.

The optimistic locking concept can be applied when using the frame gallery production frames. However, there
must be a departure from the suggested code.

In contrast to the pessimistic locking concept, the optimistic locking concept is less comfortable, since not until
the close of the transaction is there a check whether the modifications can be transferred into the database.

Operation

From the viewpoint of optimistic locking, a transaction looks as follows:

1. identification of the data record.
2. saving of the time stamp.
3. data modification.
4. transaction end: the time stamp is the same.

if yes, the transaction is closed in an orderly way.
if no, the transaction is stopped. The modifications are lost.

For every further data record that is identified for modification during the running transaction, a time stamp must
be saved, which at the end of the transaction must be checked.

Data Storage

Every data record must contain a time stamp. Since this time stamp must be unique, it is provided with the
converted content of the Natural system variable *TIMESTMP.

To extend your entity

xxx_PTS (N20) Modification time stamp

Copyright © Software AG 2002178

Data Storage and Data AccessOptimistic Locking Concept

Determining the Data to be Locked

Which data key in which specialized function must be locked must be decided from the specialized context.

Since the locking runs through a time-stamp comparison, the time stamp of every affected data record must be
checked.

The single exception is hierarchically structured data records. If a data record is stored in a tree-like structure,
whose root object is already locked and there is no possibility of otherwise accessing this hierarchically
subordinate data key, no time-stamp comparison must take place.

Application

This approach can lead to data that are modified in a logical transaction not being taken over into the data
content, because the original data meanwhile were modified by another logical transaction.

The approach is therefore not suitable for dialog systems that also contain specialized functions that run through
a large number of dialogs, since the likelihood of data being modified during the transaction is great.

It is suitable when the probability of competing accesses is small. This is the case when the logical transactions
can be closed very quickly and few transactions access the same data.

179Copyright © Software AG 2002

Optimistic Locking ConceptData Storage and Data Access

Organizational Locking Concept

Concept

This procedure presupposes that the possibility of competing accesses is hindered by organizational measures.

This can, for example, be guaranteed when only one user is responsible for the processing of particular key
ranges. This should then, however, be guaranteed by measures for protecting field content.

The organizational locking concept can be applied when using the frame gallery production frames. Here you
must, however, deviate from the suggested code.

This concept pursues a completely different approach from the concepts previously described. At data access
there is no effort in locking. The effort, however, appears at another place.

Data Storage

No measures are necessary.

Application

This concept can only be used in exceptional cases, since normal dialog systems are constructed to make the data
available to multiple users.

The application of this approach is only useful for very small systems, which are only used by very few users.

Processing Without Locking Concept

This procedure is not advisable for multi-user systems, since the dialog processing can be disturbed by
competing accesses, deadlocks, mutual overwriting, and so on.

Copyright © Software AG 2002180

Data Storage and Data AccessOrganizational Locking Concept

Transaction Logic
The term transaction logic is used to describe all activities which are executed from the beginning to the end of a
logical transaction.

A logical transaction also comprises all data modifications which have been confirmed as a unit by the end user.

Logical transactions are supported by the frames for main dialogs, subdialogs, and modal windows. The start and
end of transactions takes place in a main dialog.

The following topics are covered below:

Transaction Logic of the Modification Functions
Cancelling a Transaction

Transaction Logic of the Modification Functions
The frame gallery transaction logic guarantees that data modifications resulting from a single transaction are
either all applied or are not at all applied to the database.

The user receives a personal copy of the data records to be modified. This copy is identified using a user
identifier and a unique time stamp for the transaction.

All modifications are initially applied to the preliminary copies only. Only at the termination of the transaction
are the modifications applied to the original database.

Cancelling a Transaction
In that data modifications are only applied to preliminary files of the original data, all data modifications can
easily be removed by simply deleting the preliminary files and any possible locking markers.

181Copyright © Software AG 2002

Transaction LogicTransaction Logic

Data Transfer
Complex functions usually consist of several dialogs. In each of the dialogs, a section of the business functions is
processed. The data transfer between these dialogs can take place in the following ways:

Between all dialogs created with frames, data can be transferred via parameter PZ_DATA. For modal
windows this method is included in the suggested code.
Business data can be transferred between the main dialog and subdialogs via preliminary records.

Preliminary Copies
When starting a transaction, the original data are read from the database and the user is provided with a copy, the
preliminary copy. Modifications to the preliminary copy can only be viewed from the respective function. This
means that other users have access to the original data, but not to the preliminary copy.

Data modifications in dialogs are transferred to the preliminary copies using the command Z_CONFIRM.
Command Z_REFRESH reverts the data to the state after the most recent modifications were confirmed.

The preliminary copies can be stored either in the preliminary file Z_PRELIMINARY or in main storage. This
can be determined for each function in the respective application shell’s function maintenance. In the main
memory, a maximum of 18KB of data can be stored per transaction. For larger quantities of data, the preliminary
file must be used.

Access to the preliminary copy for an object view is embedded in a copycode. This copycode is used by the
activation module and the dialogs in subroutine view_ACCESS_PREL. Access to the preliminary copy is
transparent, irregardless of whether the data are stored in the main memory or in the preliminary file.

When a subdialog is opened, the preliminary copies are read first. When the modifications are confirmed in the
subdialog, the preliminary copies are updated.

When a transaction is closed with command Z_SAVE, the data in the preliminary copy are transferred to the
original data. Therefore, the activation module is used (as part of the object view).

The activation module can optionally be installed on a server. This is useful in the case of complex transactions.

In this case, the respective flag must be set in the application shell’s function maintenance. The actual RPC
occurs via a standard activation module. This module transfers data to the server and calls the business activation
module.

Copyright © Software AG 2002182

Data TransferData Transfer

183Copyright © Software AG 2002

Preliminary CopiesData Transfer

Locking Logic
The frame gallery suggested code uses the pessimistic locking concept. This involves the following procedures:

Lock Marker Check and Write
Remove Lock Markers

Lock Marker Check and Write
Immediately following the identification of a key value, it is checked whether or not a lock marker for the key ID
of the associated object has been written. If yes, the access to the object is denied. Otherwise, a lock marker is
written.

The locking of data occurs in a standard fashion during the start of the transaction. In the custom component
Z_LOCK_RECORD the frames for main dialogs are assigned the object identifier and the key ID. The standard
subroutine Z_CHECK_AND_LOCK_RECORD assumes responsibility for locking the data record.

Furthermore, it can be necessary to lock additional records at a given point during transaction processing. For
this purpose, the suggested code of customizable component Z_LOCK_RECORD can be copied and adapted
accordingly for use within any other component.

Remove Lock Markers
Lock markers are removed when the transaction is terminated normally or is cancelled. The removal is
performed by the dialog frame. The key ID used is the unique transaction time stamp in combination with the
identifier of the current user.

Copyright © Software AG 2002184

Locking LogicLocking Logic

Creating an SQL Access Layer
The following topics are covered below:

General Information
Different Database Accesses with Adabas C and SQL
Creating SQL Tables and DDMs
Access to SQL Tables

General Information

Encapsulating the Database Accesses

Various database systems can serve as a basis for holding the data of an information object.

This is made easier by encapsulating the database accesses. Then it is only necessary to create a new access layer
for each target database.

Access to an "object type" by the application remains as described in the preceding sections of this
documentation. Modifications to the application programs are not necessary.

Creating an Access Layer

To create an access layer for an SQL database, for example, Adabas D, suggested codes are available. They are
handled similarly to the suggested codes for the Adabas C access layer.

To support the largest possible number of SQL databases, the lowest common denominator must be found, that
is, field lengths must be adjusted to the target platform with the most limitations. When SQL statements are used,
they must not use database specific syntax features.

Definition of the Access Layer

The following sections describe the definition of the access layer from the viewpoint of redoing an existing
Adabas C access layer.

They also contain notes on implementing a new system.

Different Database Accesses with Adabas C and SQL
Accesses to an SQL database differ in some ways from accesses to Adabas C data:

Most differences are found primarily in the read loops which return multiple records.
Single accesses can be reshaped easily.

These differences require a new access layer which can be largely derived from the Adabas C access layer.

The following topics are covered below:

Converting a Sequential Read Access
Converting a Single Access
Creating Read Accesses
Access using a Key with Several Components

185Copyright © Software AG 2002

Creating an SQL Access LayerCreating an SQL Access Layer

Inserting a New Record

Converting a Sequential Read Access

The conversion of a sequential read access involves use of the SQL ORDER BY statement.

Natural DML (Data Manipulation Language):

 *
 RLI. READ <view name> BY <key> STARTING FROM <#start key>
 *
 <further processing>
 *
 END-READ

SQL Syntax:

 *
 RLI. SELECT ALL * INTO VIEW <view name> FROM <table name>
 WHERE <key> >= <#comparison key>
 ORDER BY <key> ASC,
 *
 <further processing>
 *
 END-SELECT
 *

Converting a Single Access

The counterpart of a single access to an object can be as follows:

Natural DML:

 *
 FRE. FIND <view name> WITH <key> = <#start key>
 *
 <further processing>
 *
 END-FIND
 *
 IF *NUMBER(FRE.) GT 0
 MOVE 1 TO PZ_AS_REC_EXIST /* record exists
 ELSE
 MOVE 1 TO PZ_AS_RSP /* see PZ_AS_REC_EXIST
 END-IF
 *

SQL Syntax:

Copyright © Software AG 2002186

Creating an SQL Access LayerConverting a Sequential Read Access

 *
 FRE. SELECT SINGLE * INTO VIEW <view name> FROM <table name>
 WHERE <key> = <#comparison key>
 *
 END-SELECT
 *
 IF *COUNTER(FRE.) GT 0
 *
 <further processing>
 MOVE 1 TO PZ_AS_REC_EXIST /* record exists
 ELSE
 MOVE 1 TO PZ_AS_RSP /* see PZ_AS_REC_EXIST
 END-IF
 *

Creating Read Accesses

When creating the read access, you must ensure that, Adabas C-specific elements are converted.

Since periodic groups or multiple fields are not possible in SQL, these elements must be represented by
corresponding division into tables and DDMs. The database design of a relational database has a flat structure,
which means that the number of tables and relations increases in comparison to that of a design using Adabas C
features.

See the following example for an illustration of what is involved.

Language-dependent fields with several occurrences that are defined as keys are maintained in their own
sub-table.
Access to this sub-table is carried out through a language-dependent key which consists of a main key and
an additional language identification.
The language-independent information is read from the accompanying main table using the corresponding
main key.

187Copyright © Software AG 2002

Creating Read AccessesCreating an SQL Access Layer

SQL Syntax:

 *
 FREL. SELECT ALL * INTO VIEW <language view name> FROM <language table name>
 WHERE <language key> = <#comparison language key>
 AND <language> = <#comparison language>
 *
 <further processing>
 *
 END-SELECT
 *
 IF *COUNTER(FRE.) GT 0
 MOVE 1 TO PZ_AS_REC_EXIST /* record exists
 ELSE
 MOVE 1 TO PZ_AS_RSP /* see PZ_AS_REC_EXIST
 ESCAPE ROUTINE
 END-IF
 *
 *
 FRE. SELECT ALL * INTO VIEW <view name> FROM <table name>
 WHERE <key> = <FREL.key>
 /* Reading the main object using the <key>
 /* of the language dependent value found
 *
 <further processing>
 *
 END-SELECT
 *

Access using a Key with Several Components

If an SQL access uses a key that consists of several components, the counterpart to a READ statement in Natural
DML can be implemented by an appropriate request.

 RLIA. SELECT ALL * INTO VIEW <view name>
 FROM <table name>
 WHERE <key-1> > <#comparison key-1> OR
 *
 <key-1> = <#comparison key-1>
 AND <key-2> > <#comparison key-2> OR
 *
 <key-1> = <#comparison key-1>
 AND <key-2> = <#comparison key-2>
 AND <key-3> >= <#comparison key-3> OR
 *
 ORDER BY <key-1> ASC ,
 <key-2> ASC ,
 <key-3> ASC

Copyright © Software AG 2002188

Creating an SQL Access LayerAccess using a Key with Several Components

Inserting a New Record

The insertion of a new record is created using the available DDM and table fields. The individual fields of the
DDM are transferred into the table by the appropriate SQL syntax .

 *
 * Store record
 *
 INSERT INTO <table name> (
 <field-1> ,
 <field-2> ,
 <field-3>)
 VALUES (
 <view name.field-1> ,
 <view name.field-2> ,
 <view name.field-3>)

189Copyright © Software AG 2002

Inserting a New RecordCreating an SQL Access Layer

Creating SQL Tables and DDMs
The communication of the access layer with the database uses DDMs even with SQL database systems.

The interface must be modified according to the target database.

When creating the tables and DDMs, the limitations of the target systems must be accommodated. These are:

no multiple fields or periodic groups;
no definition of super-/sub-descriptors;
limitations in the field lengths differ from Adabas C.

The limitations lead to different DDMs. The following sections describe some of the possible modifications.

Short Fields with Occurrences
Long Fields with Occurrences
Multiple Fields that are Descriptors
Converting Formats
Example of an Unsupported Field Format Conversion
Defining Tables

Short Fields with Occurrences

Multiple fields that are not part of a descriptor and are shorter than 251 bytes are converted into individual fields
with redefinitions.

DDM for Adabas C

 V 1 <view name>
 M 2 xxx_LNAME_LC A 16 (1:9)
 R 2 xxx_LNAME_LC
 3 xxx_LNAME_LC_G (1:9)
 4 xxx_NAME_LC_LONG N 1
 4 xxx_NAME_LC A 15

DDM for SQL Databases with Longer Redefinition

 V 1 <view name>
 2 xxx_LNAME_LC_R A 144
 R 2 xxx_LNAME_LC_R
 3 xxx_LNAME_LC A 16 (1:9)
 R 3 xxx_LNAME_LC
 4 xxx_LNAME_LC_G (1:9)
 5 xxx_NAME_LC_LONG N 1
 5 xxx_NAME_LC A 15

This type of DDM is advantageous in that only a few fields must be defined.

Dialogs and programs access the variables via redefinition. Access to the SQL data is through the unredefined
whole fields.

DDM for SQL Databases with Individual Fields Numbered

Copyright © Software AG 2002190

Creating an SQL Access LayerCreating SQL Tables and DDMs

 V 1 <view name>
 2 xxx_LNAME_LC_1 A 16
 R 2 xxx_LNAME_LC_1
 3 xxx_LNAME_LC_G_1
 4 xxx_NAME_LC_LONG_1 N 1
 4 xxx_NAME_LC_1 A 15

This form of definition in a DDM has the disadvantage that many fields must be defined.

Access to all variables and SQL data is through the individual fields. The redefinitions here allow access to
individual components.

Long Fields with Occurrences

Multiple fields or periodic groups that are not part of a descriptor but, including all occurrences, are longer than
251 bytes, can be converted into large individual fields with the redefinition of the group.

The allocation of the variables is through a redefinition.

The access to the SQL data is through the individual whole fields.

DDM for Adabas C

 V 1 <view name>
 P 2 xxx_field A 80 (1:9)

DDM for SQL Databases

 G 2 xxx_field_G
 3 xxx_field_1 A 240
 3 xxx_field_2 A 240
 3 xxx_field_3 A 24
 R 2 xxx_field_G
 3 xxx_field A 80 (1:9)

When processing multiple fields, conversion must be carried out in the same way.

To remove blank entries within the array, an appropriate routine must be written.

Multiple Fields that are Descriptors

Searching within a multiple field is possible with Adabas C. The SQL-specific conversion must then convert the
multiple field by defining a main table and a sub table.

A second DDM consists of the fields via which a read access is possible.

Redundant holding of data is avoided since the information in the first DDM contains only the non-descriptor
components. If a record is read through the multiple field, the data of the first view of the main table must be
read through the common main key.

DDM for Adabas C

191Copyright © Software AG 2002

Long Fields with OccurrencesCreating an SQL Access Layer

 V 1 <view name>
 2 xxx_ID A 4
 2 xxx_FIELD1 A 20
 <further fields>
 *
 M 2 xxx_LNAME A 16 (1:9) /* Descriptor
 R 2 xxx_LNAME
 3 xxx_LNAME_G (1:9)
 4 xxx_NAME_LONG N 1
 4 xxx_NAME A 15

DDM for SQL Databases

 V 1 <view name>
 2 xxx_ID A 4
 2 xxx_FIELD1 A 20
 <additional fields>

 V 1 <view name 1>
 2 xxx_ID A 4
 2 xxx_LONG N 1
 2 xxx_NAME A 15

Converting Formats

Some formats must be converted into a corresponding SQL target database format. Here again, a common
denominator must be used.

The conversion of unsupported field formats is described in the section below.

Example of an Unsupported Field Format Conversion

In the following example, the conversion of a field not mappable in the length is performed.

In general, fields defined as numeric or integer are less problematic in a client/server environment than fields that
are either packed or binary.

DDM for Adabas C

 1 xxx_ID P 20

DDM for SQL Databases

 1 xxx_ID_R A 20
 R 1 xxx_ID_R
 1 xxx_ID N 20

Copyright © Software AG 2002192

Creating an SQL Access LayerConverting Formats

Definition in the SQL Table

 xxx_ID CHAR(20)

In all instances in which mapping is possible, a conversion to a simple format is carried out.

DDM for Adabas C

 1 xxx_ID P 12

DDM for an SQL Database

 1 xxx_ID N 12

SQL Table

 xxx_ID DEC(12)

Defining Tables

How is a Table Created with DDMs?

The DDMs must be rewritten in a corresponding SQL database table definition.

The new definitions created are entered as SQL tables in the target database.

The conversion of unsupported formats depends on the target database.

The definition of the individual SQL table matches the DDMs that were converted for an SQL database.

DDM for Adabas C

 V 1 <view name>
 2 xxx_ID A 4
 2 xxx_FIELD1 A 20
 <further fields>
 *
 M 2 xxx_LNAME A 16 (1:9) /* Descriptor
 R 2 xxx_LNAME
 3 xxx_LNAME_G (1:9)
 4 xxx_NAME_LONG N 1
 4 xxx_NAME A 15

193Copyright © Software AG 2002

Defining TablesCreating an SQL Access Layer

DDM for SQL Databases

 V 1 <view name>
 2 xxx_ID A 4
 2 xxx_FIELD1 A 20
 <further fields>

 V 1 <viewl>
 2 xxx_LANGUAGE_ID A 4
 2 xxx_LANG N 1
 2 xxx_NAME A 15

SQL Table

 CREATE TABLE <table name>
 (
 xxx_ID CHAR(4),
 xxx_FIELD1 CHAR(20),
 <further fields>

)

 CREATE INDEX <table name>.xxx_CODE

 CREATE TABLE <table language>
 (
 xxx_ID CHAR(4),
 xxx_LANG DEC(1),
 xxx_NAME CHAR(15)
)

 CREATE INDEX xxx_LNAME ON <table language> (xxx_LANG, xxx_NAME)

Copyright © Software AG 2002194

Creating an SQL Access LayerDefining Tables

Access to SQL Tables
The following topics are covered below:

Modifications of a Record
Modifications of Individual Fields
Optimizing Accesses
Application of System Variables
Allocation of Variables

Modifications of a Record

For the modification of an entire record, the field list in the form of the whole view is passed. The field list
contains the complete record from the view.

The modification of the record is carried out with a Searched update.

Natural DML

 FUP. FIND <view name> WITH <xxx_key> = <xxx_key_FROM>
 MOVE <#xxx_fields> TO <view name.xxx_fields>
 MOVE
 UPDATE
 END-FIND

SQL Syntax

 FUP. SELECT ALL COUNT INTO LZ_COUNT FROM <table name>
 WHERE <xxx_key> = <xxx_key_FROM>
 END-SELECT
 *
 IF LZ_COUNT GT 0
 MOVE 1 TO PZ_AS_REC_EXIST /* record exists
 MOVE <#xxx_fields> TO <view name.xxx_fields>
 MOVE
 UPDATE <view name> SET *
 WHERE <xxx_key> = <xxx_key_FROM>
 *
 ELSE
 MOVE 1 TO PZ_AS_RSP /* see PZ_AS_REC_EXIST
 END-IF

Modifications of Individual Fields

The modifications of individual fields are also carried out with this read access. The field list, however, does not
contain the entire record, but the fields that are actually modified.

SQL

 UPDATE <table name>
 SET <xxx_field1> = <view name>.<xxx_field1>
 WHERE <xxx_key> = <xxx_key_FROM>

Example: Dating

195Copyright © Software AG 2002

Access to SQL TablesCreating an SQL Access Layer

 UPDATE <table name>
 SET <xxx_EFD_INV> = RUP.<xxx_EFD_INV> /* modified value of the view
 WHERE <xxx_ID> = RUP.<xxx_ID> /* key value found
 AND <xxx_EFD_INV> = <#EFD_OLD> /* date of record read

Optimizing Accesses

Using SQL syntaxes enables transparent access to the data.

The exact handling of the individual key components and the conversion of data types are easier to apply with
embedded SQL statements.

The optimization is thereby more in sync on the target database system. When using SQL syntax, however, the
common denominator - i.e. using ANSI/ISO-SQL - must be taken into consideration.

The optimization of the accesses is influenced by the:

design of the tables;
definition of the primary key and of indices;
read accesses using SQL syntax.

For the individual accesses and table creation, database-specific optimizations must be taken into consideration.

In the following example, only one variant of an SQL-specific optimization is presented.

Table Definition

 CREATE TABLE <table name>
 (
 xxx_CLIENT_ID CHAR(2),
 xxx_ID CHAR(12),
 xxx_NAME CHAR(30)

 PRIMARY KEY (xxx_CLIENT_ID, xxx_ID
)

Access to the Table

 SELECT ALL * INTO VIEW <view name>
 FROM <table name>
 WHERE <xxx_CLIENT_ID> > <#xxx_CLIENT_ID> OR
 <xxx_CLIENT_ID> = <#xxx_CLIENT_ID>
 AND <xxx_ID> >= <#xxx_ID>
 *
 ORDER BY <xxx_CLIENT_ID> ASC ,
 <xxx_ID> ASC

In this case the access uses the primary key of the table which provides the best performance. With the
corresponding number of indices that are created, further sorting sequences are mapped.

 CREATE INDEX xxx_KEY ON <table name> (xxx_CLIENT_ID, xxx_ID, xxx_NAME)

Specifying the sorting sequence in the ORDER clause (in the above example) causes the SQL database system to
use the primary key as the preferred access path.

Copyright © Software AG 2002196

Creating an SQL Access LayerOptimizing Accesses

This access can be optimized, when only a minimum of OR concatenations is used in the WHERE clause. As a
result of a logical OR concatenation, the SQL database creates two internal lists, which must be validated against
each other. This causes poor performance during multi-record accesses.

The optimized SELECT statement runs as follows:

 SELECT ALL * INTO VIEW <view name>
 FROM <table name>

 WHERE <xxx_CLIENT_ID> = <#xxx_CLIENT_ID>
 AND <xxx_ID> >= <#xxx_ID>
 *
 ORDER BY <xxx_CLIENT_ID> ASC ,
 <xxx_ID> ASC

Application of System Variables

The application of system variables within the access layer is also modified. The available variables are limited
by the use of SQL statements.

The variable *COUNTER can be used for checks. *NUMBER is no longer accessed. The variable *ISN is not
available.

Natural DML

 FRE. FIND <view name> WITH <key> = <#start key>

 END-FIND
 *
 IF *NUMBER(FRE.) GT 0

 END-IF

SQL Syntax

 FRE. SELECT ALL * INTO VIEW <view name>
 FROM <table name>
 WHERE <key> = <#comparison key>

 END-SELECT
 *
 IF *COUNTER(FRE.) GT 0

 END-IF

The number of records is established using another access. For this, a target variable is to be defined, into which
the value is put.

197Copyright © Software AG 2002

Application of System VariablesCreating an SQL Access Layer

 DEFINE DATA LOCAL

 01 LZ_COUNT (I4)
 END-DEFINE
 *
 FUP. SELECT ALL COUNT INTO LZ_COUNT FROM <table name>
 WHERE <xxx_key> = <xxx_key_FROM>
 END-SELECT
 *
 IF LZ_COUNT GT 0

 END-IF

Allocation of Variables

The allocation of the values from the DDM to the parameter variables of the access module can, in most cases,
be implemented by a MOVE BY NAME statement.

If, with the transfer, a format or length is modified, the value must be set individually.

If, in the access layer, a conversion into several individual fields is required, these must be set.

It is also possible to define, in the DDM, a group over the individual fields. A redefinition in the corresponding
variables with occurrences is thus possible in the local data area.

The transfer can then be carried out with a MOVE BY NAME. In the parameter data area, the definition then
matches the view.

SQL View

 V 1 <view name>
 G 2 xxx_field_G
 3 xxx_field_1 A 240
 3 xxx_field_2 A 240
 3 xxx_field_3 A 240
 R 2 xxx_field_G
 3 xxx_field A 80 (1:9)

Parameter Data Area Definition

 1 <PDA group name>
 2 xxx_field A 80 (1:9)

Copyright © Software AG 2002198

Creating an SQL Access LayerAllocation of Variables

User Exits
This section describes the user exits available with the Natural application shell. With these user exits, standard
functionality can be adapted to the requirements of your environment.

Initializing Access Protection
Initializing Application-Specific Data
Default Start-up Processing

Initializing Access Protection

Description

This user exit sets up the desired access protection for the application. As a result of the access verification, the
initialization of the command data is dependent upon the setting in the user exit.

In addition, this user exit can determine whether the object types Z_APPLICATION, Z_COMMAND,
Z_FUNCTION and Z_OBJECTTYPE are individually verified through the system set up.

In this case, the user exit is called for each object type. The individual verification can be coded in the
corresponding DECIDE statements. Response code PZ_RSP determines whether or not the object type is
accepted in the initialization data.

Subprogram: ZXUSEC0N
Parameter: ZXUSEC0A

199Copyright © Software AG 2002

User ExitsUser Exits

Parameters

Input/Output Parameter Variable Description

Input PZ_USER_ID User ID

Input PZ_OBJ_TYPE Type of object

Output PZ_SECURITY 0 - Application without access protection 1 - Application with
access protection

Output PZ_SECURITY_DEFAULT 0 - Default is disallowed
1 - Default is allowed

Input PZ_CLIENT_ID Client ID of current application

Input PZ_CMD_ID Command ID to be verified

Input PZ_CMD_TYPE Type of command to be verified

Input PZ_CMD_PARM Parameter of command to be verified

Input PZ_APPL_ID Application ID to be verified

Input PZ_OBJ_ID Object ID to be verified

Input PZ_FCT_ID Function ID to be verified

Output PZ_CHECK_CMD 0 - Commands not individually verified
1 - Commands individually verified

Output PZ_CHECK_APPL 0 - Applications not individually verified
1 - Applications individually verified

Output PZ_CHECK_OBJ 0 - Object types not individually verified
1 - Object types individually verified

Output PZ_CHECK_FCT 0 - Functions not individually verified
1 - Functions individually verified

Output PZ_RSP 0 - Objects allowed
1 - Objects disallowed

Copyright © Software AG 2002200

User ExitsParameters

Initializing Application-Specific Data

Description

This user exit initializes the application-specific data in LDA ZXXGLOBL. It is here that the user environment
LZ_GLOB_DATA_CUSTOM is initialized. Additionally, one can, for example, determine whether or not the
icon-based navigation is started and with which application.

Subprogram: ZXUPROFN
Parameter: ZXUPROFA

Parameter

Input/Output Parameter Variable Description

Input/Output PZ_PROF_DATA Profile data

When this user exit is started, the data from PZ_PROF_DATA is transferred to the variables of the LDA
ZXXGLOBL. Before this user exit terminates, the data is returned to PZ_PROF_DATA.

Default Start-up Processing

Description

This user exit executes an application-specific Start Processing. It is here, for example, that the first standard
dialog is opened.

External Subroutine: ZXUINITS
Parameter: ZXUINITA

Parameter

Input/Output Parameter Variable Description

Input PZ_RECEIVE Standard PDA ZXXREC0A

When this user exit is run, parameter PZ_RECEIVE is copied in the group PZ_LOCAL. The variables for group
PZ_RECEIVE must not be modified.

201Copyright © Software AG 2002

Initializing Application-Specific DataUser Exits

Business-Specification Descriptions
The following topics are covered below:

General Usage
Dialog Function
Object View and Other Modules with Parameter Interface
Other Reusable Modules
Validations
Information Objects
Data Elements
Modification History
Descriptive Traits

General Usage
The description of an object contains a business specification. To avoid the redundant storage of information, as
long as objects can be identified from their references, it is not necessary to describe how they are related to one
another.

This section describes various types of descriptive objects as well as the related descriptive traits.

Dialog Function
Definition
Function summary
Related information objects
Pre-definitions
Validations (unless documented separately)
Selection help
Lower-level dialogs
Performance aspects (optional)
Comments

Object View and Other Modules with Parameter Interface
Definition
Function summary
Input/output parameters
Variables used
Validations (unless documented separately)
Comments

Other Reusable Modules
Definition
Function summary
Variables used
Comments

Copyright © Software AG 2002202

Business-Specification DescriptionsBusiness-Specification Descriptions

Validations
Definition
Related information objects
Validations
Comments

Information Objects
Description
Set structure
Comments

Data Elements
Description
Value range
Validation
Access protection
Comments

Modification History
At the beginning of the description, each object must have a modification log indicating who updated the object,
when it was updated, and what modifications were made.

User Date Comment

USERX 11.06.95 Function completed

USERY 21.12.95 Program call XYZ adapted to new structure

203Copyright © Software AG 2002

ValidationsBusiness-Specification Descriptions

Descriptive Traits
Descriptive traits are explained detail below:

Access Protection

Any data element related access restrictions.

Comments

Additional comments.

Definition

A brief explanation regarding the objective and content of the module.

Description

Module documentation.

Information Objects

All information objects which are accessed (read/write) from this object.

If access to an information object is performed using an object view, each information object of the object view
must be listed together with the read or write operation codes.

Otherwise, all Natural views must be listed via which read/write access is performed from this object. In
addition, a descriptor is to be provided.

A descriptor which is constructed from many components must be provided with the components in physical
order.

The listing of Natural view and descriptor can be added at the earliest following the database design.

A tabular representation is recommended for readability:

Information Object

L/S Object view/ Oper. Code/Access Key ID

Input/Output Parameters

All parameters which are used when a module is called as well as all parameters which are returned by the
module.

Copyright © Software AG 2002204

Business-Specification DescriptionsDescriptive Traits

Lower Level Dialogs

Description of subfunctions which can be called locally from the main dialog function.

An indication as to whether the lower level dialog must be implemented as a modal or non-modal module must
be provided.

If the subdialog is only available in one dialog function, the description of the subdialog can be provided here.

A reusable subdialog must be defined and described as a separate object and only listed here.

Pre-definitions - Defaults, Initializations

Defaults for dialog fields can be divided into two groups:

Default entries when adding a data record;
Calculations/derivations when adding/modifying a data record.

The calculation/derivation of field contents can result from:

Algorithms (the formula used must be provided here);
Contents of other information objects (these information objects must be listed);
Profile definitions.

Representation in tabular form is recommended.

Performance Aspect

Information relating to performance aspects of the dialog function (response time behavior), for example:

How often will the dialog function be invoked?
How many users are expected to be using the dialog function concurrently?
Will large amounts of data be processed, or only a single record?

Performance Scope

The performance scope must be clearly and precisely stated, i.e., which business functions are provided by the
module.

Functionality which already is covered via frames must not be documented here (e.g., paging, transaction
protocol).

205Copyright © Software AG 2002

Lower Level DialogsBusiness-Specification Descriptions

Validation

For the specification phase, it is recommended that all known dialog related validations be described here, as
long as these are not described in separate modules.

Formal checks on individual dialog fields, for example, ’Mandatory Field’ or ’Field must be completely filled’,
can be included in the description of the data elements.

Later, in the implementation phase, all validations must be described centrally in the validation module of the
object view, thereby making subsequent maintenance easier.

In this case, a reference to the validation module will be sufficient.

Selection Help

All data elements must be listed for which a selection help is to be provided.

If already known, the selected dialog element for the selection help can also be mentioned.

Set Structure

Information concerning set structure which will be useful for subsequent construction of database and
application programs.

Used Variables

All variables which are used and a reference to where the variables are defined.

Value Area

If known, a listing of the possible values of the data elements.

Copyright © Software AG 2002206

Business-Specification DescriptionsValidation

	Cover Page
	page 2

	Table of Contents
	Frame Gallery - Overview
	Frame Gallery - General Information
	What is the Frame Gallery?
	Benefits Provided by Frame Gallery
	Application Development Procedure

	Designing the User Interface
	Standard Layout Settings
	Push Button Spacing
	List Boxes
	Selection Boxes and Combo Boxes
	Menu Bars

	Frame Gallery Naming Conventions
	Reserved Identifiers for Key Values
	Conventions for Message Text
	System Messages
	Application Messages

	Natural Object Names
	Structure
	Business Area Abbreviation
	Object Type Abbreviation
	Function Identification
	Natural Language Code
	Natural Object Type
	Field Names

	Frame Gallery Object Names
	General
	Frame Gallery Function Names

	Designing the Application Structure
	Familiarizing Yourself with the Application Frames
	The Business Function
	Identifying a Business Function
	Structuring a Function

	Selecting Frames
	Dialog Structure
	Entry-Level Dialog - Level 1
	Subordinate Dialogs - Level 2
	Modal Dialogs - Level 3
	Permissible Calls

	Examples for Combining Production Frames
	Basic Combinations
	Variations

	Using Tables in Frame Gallery
	Using Tables
	Criteria for Defining a Table
	Maintenance Functions for Tables
	Access to Table Data
	Selection Help for Table Data

	Creating Help for Table Data
	Creating an Access Module for a Table
	Testing Further Database Operations

	Creating a User Exit for Single-object Processing
	Invoking the User Exit
	Creating the User Exit

	Generating Functions in Frame Gallery
	Criteria for Using Frame Gallery Frames
	Accessing the Frame Gallery
	Creating an Object View
	Generating Dialogs

	Customizing a Generated Application
	Customizable Components
	Commands
	Frame Logic Control Variables
	Reusable Components
	Skeleton Objects

	Generated Code
	Suggested Code
	Naming Conventions in the Suggested Code
	Skeleton Data Definitions

	Integrating a Dialog in the Application Shell

	Communication Between Dialogs
	The Standard Interface
	Standard Interface Structure
	Local Copy of the Interface
	Communication Using User-Defined Events
	Communication using Pre-Defined Event Z_CMD_EXEC

	Calling a Dialog
	Communication with Subdialogs
	Foreign Key Selection/Active Help
	Calling Modal Windows
	Commands for Opening a Dialog

	Application Frames
	Frame Overview
	Browse Dialog
	Description
	Links with Other Dialogs
	Dialog Layout
	Customizable Components
	Commands Supported
	Associated Variables
	Variables for Controlling Frame Behavior

	Deletion Subprogram
	Description
	Links with Other Dialogs
	Dialog Layout
	Customizable Components
	Associated Variables

	Key Dialog
	Description
	Links with Other Dialogs
	Dialog Layout
	Customizable Components
	Available Commands
	Associated Variables
	Variables for Controlling Frame Behavior

	Maintain Dialog
	Description
	Links with Other Dialogs
	Dialog Layout
	Customizable Components
	Available Commands
	Associated Variables
	Variables Controlling Frame Behavior

	Mass Processing Dialog
	Description
	Links with Other Dialogs
	Dialog Layout
	Customizable Components
	Available Commands
	Associated Variables

	Modal Window
	Description
	Links with Other Dialogs
	Dialog Layout
	Customizable Components
	Available Commands
	Additional Information

	Nonstandard Dialog
	Description
	Links with Other Dialogs
	Dialog Layout
	Customizable Components
	Available Commands
	Associated Variables
	Variables for Controlling Frame Behavior
	Locking Data

	Subdialog
	Description
	Links with Other Dialogs
	Dialog Layout
	Customizable Components
	Available Commands
	Associated Variables
	Variables for Controlling Frame Behavior

	Background Program
	Description
	Links with Other Dialogs
	Customizable Components
	Associated Variables

	Load Objects Subprogram
	Description
	Links with Other Dialogs
	Customizable Components
	Associated Variables

	Unload Objects Subprogram
	Description
	Links with Other Dialogs
	Customizable Components
	Associated Variables

	Standard Commands
	Local Standard Commands
	Z_APPLSTART
	Z_CALL
	Z_CANCEL
	Z_CLEAR
	Z_CLOSE
	Z_CONFIRM
	Z_EXIT
	Z_HELP
	Z_HELPCNTNT
	Z_HELPUSE
	Z_INFO
	Z_INFOBUFFER
	Z_INITBUFFER
	Z_NEXT
	Z_OK
	Z_OPEN
	Z_PREVIOUS
	Z_READ
	Z_REFRESH
	Z_SAVE
	Z_SAVEAS
	Z_SCRATCH
	Z_SEARCH

	Internal Standard Commands
	Z_CANCEL_DLG
	Z_CANCEL_KEY
	Z_CANCEL_TMR
	Z_CONFIRM
	Z_CONF_DLG
	Z_DATA_MOD
	Z_ENTER_SUB
	Z_EXIT
	Z_EXIT_TMR
	Z_GET_DATA
	Z_GET_FOCUS
	Z_GET_GLOBAL
	Z_GET_KEY
	Z_INIT
	Z_ITEM_ADD
	Z_ITEM_DEL
	Z_ITEM_MOD
	Z_ITEM_NEXT
	Z_ITEM_PREV
	Z_KEY_MOD
	Z_LB_CLICK
	Z_LB_DOUBLE
	Z_LB_FILL
	Z_LB_SELECT
	Z_LIST_MOD
	Z_MOD_DLG
	Z_NAV_ERR
	Z_NEW_REC
	Z_REFRESH
	Z_RESET_DLG
	Z_SAVEAS
	Z_SELECT_ALL
	Z_START_NKEY
	Z_START_KEY
	Z_START_SAVE
	Z_START_SEL
	Z_START_SOLO

	Tracing a Command

	Customizable Components
	Z_ACCESS_DATA
	Z_ACTIVATE_PREL_REC
	Z_ADD_PREL_REC
	Z_ASSIGN_DEFAULT_KEY
	Z_ASSIGN_INPUT_TO_KEY
	Z_ASSIGN_SUBDIALOG
	Z_CHECK_EXISTENCE
	Z_CLEAR_INPUT_FIELDS
	Z_CMD_EXEC_END
	Z_CMD_EXEC_START
	Z_CUSTOM_CMD
	Z_DELETE
	Z_FILL_DIALOG
	Z_FILL_ITEM
	Z_INITIALIZE
	Z_LOCK_RECORD
	Z_NAVIGATE_ON_ERROR
	Z_PASS_KEY
	Z_PROCESS_ITEM
	Z_READ_PREL_REC
	Z_RECEIVE_DATA
	Z_RECEIVE_KEY
	Z_RETURN_KEY
	Z_RETURN_PARMS
	Z_SET_KEY_RANGE
	Z_SELECT
	Z_UPDATE
	Z_UPDATE_ITEM
	Z_UPDATE_PREL_KEY
	Z_UPDATE_PREL_REC
	Z_VALIDATE

	Reusable Components
	Communication with the Command Processor
	Subroutine: Z_CMD_DISABLE
	Subroutine: Z_CMD_ENABLE
	Subroutine: Z_CMD_ADD_CTRL
	Subroutine: Z_SEND_CMD_PROC
	Operation: Z_CMD_CHECK
	Operation: Z_CMD_UNCHECK
	Operation: Z_CMD_DELETE
	Operation: Z_CMD_RENAME
	Operation: Z_CMD_REPLACE
	Operation: Z_CMD_DIL_REPLACE

	Communication with the Data Buffer
	Natural Subroutine: Z_GIVE_GLOBAL
	Natural Subroutine: Z_UPDATE_GLOBAL

	Starting a Dialog †Application, Function, Browse‡
	External Subroutine: Z_INVOKE_FUNCTION

	Processing Status of Dialog Elements
	Natural Subprogram: ZXXCTIGN
	Natural Subprogram: ZXXCTKYN
	Natural Subprogram: ZXXCTMON
	Natural Subroutine: Z_DIALOG_MODIFIED

	Message Window
	Natural Subroutine: Z_DISPLAY_MESSAGE

	Date Validation
	Natural Subprogram: ZXXDATEN

	Numeric Validation
	Natural Subprogram: ZXXNC00N

	Logical Locking
	Natural Subroutine: Z_CHECK_AND_LOCK_RECORD

	Background Processes
	General Information
	Creating and Maintaining Background Procedures
	General
	Using Administration Functions
	Types of Background Processing

	Invoking Background Processes
	Calling a Background Program from a Dialog
	Parameter Usage

	Start Background Program from Dialog
	Parameters

	Implementing Background Programs
	Passing Parameters
	Logically Locking Data Records
	Restart
	Error Handling
	Setting the Processing Status
	Monitoring Program Execution

	Implementing Computer Center Background Processes
	Error Handling
	Monitoring Program Execution

	The Command System
	Information Objects and Application Components
	Data Buffer
	Access Protection
	Command Processor
	Menu Items
	Tool Bar Items
	Bitmaps

	Command Processing Description

	List Box Handling
	Prerequisites
	Functional Scope of the Frame Modules
	Additional User Activities
	Subprogram
	Copycode
	Dialog Layout
	Assign Data Areas
	Include Copycode

	Integrate Processing into the Dialog
	Subroutine Z_INITIALIZE
	Subroutine Z_FILL_DIALOG
	Subroutine Z_CUSTOM_CMD
	Subroutine Z_UPDATE_PREC_REC

	Creating Object Views
	Concepts
	Natural Objects Associated with an Object View
	Object View Info
	Object View LDA
	Constants LDA
	Single Object PDA
	Multiple Object PDA
	Preliminary Copies Copycode
	Single Object Subprogram
	Multiple Object Subprogram
	Preliminary Copies Subprogram

	Implementing Single-object Access
	Access Module Structure
	Creation of Consistency Checks
	Application Program/Object View Interface
	Error Handling

	Implementing Multiple-Object Access
	Structure of the Multiple-Object Access Module
	Checking
	Application Program/Object View Interface
	Error Handling

	Implementing Access to Preliminary Copies
	Copycode for Access to Preliminary Copies
	Activation Module

	Object View Implementation
	Starting the Implementation
	Object View Creation
	Object View Creation for Complex Objects
	Size Problem Solution
	Calling the Access Modules
	Single-object Processing with the Multiple-object Module
	Reading Sequentially using the Multiple-object Module

	Data Storage and Data Access
	Terminology
	Concepts for Data Storage
	Time Stamped Data
	General
	Time Stamping Concept Recommendation

	Histories
	Histories in the Original File with Validity Identifier
	Histories in the Original File with Additional Key
	History Keeping in a Separate File

	Multiple Control
	Complex Variant
	Simple Variant

	Logical Deleting
	Data Storage
	Accesses

	Multilingual Applications
	Using a Separate Entity
	Language-Dependent Fields in the Entity

	Access Paths
	Sequential Reading through Nonunique Key
	Upper/Lower Case

	Structuring Physical Files
	Synchronizing Competing Accesses
	General
	Use of Locking Concepts
	Pessimistic Locking Concept
	Optimistic Locking Concept
	Organizational Locking Concept
	Processing Without Locking Concept

	Transaction Logic
	Transaction Logic of the Modification Functions
	Cancelling a Transaction

	Data Transfer
	Preliminary Copies

	Locking Logic
	Lock Marker Check and Write
	Remove Lock Markers

	Creating an SQL Access Layer
	General Information
	Encapsulating the Database Accesses
	Creating an Access Layer
	Definition of the Access Layer

	Different Database Accesses with Adabas C and SQL
	Converting a Sequential Read Access
	Converting a Single Access
	Creating Read Accesses
	Access using a Key with Several Components
	Inserting a New Record

	Creating SQL Tables and DDMs
	Short Fields with Occurrences
	Long Fields with Occurrences
	Multiple Fields that are Descriptors
	Converting Formats
	Example of an Unsupported Field Format Conversion
	Defining Tables

	Access to SQL Tables
	Modifications of a Record
	Modifications of Individual Fields
	Optimizing Accesses
	Application of System Variables
	Allocation of Variables

	User Exits
	Initializing Access Protection
	Description
	Parameters

	Initializing Application-Specific Data
	Description
	Parameter

	Default Start-up Processing
	Description
	Parameter

	Business-Specification Descriptions
	General Usage
	Dialog Function
	Object View and Other Modules with Parameter Interface
	Other Reusable Modules
	Validations
	Information Objects
	Data Elements
	Modification History
	Descriptive Traits
	Access Protection
	Comments
	Definition
	Description
	Information Objects
	Input/Output Parameters
	Lower Level Dialogs
	Pre-definitions - Defaults, Initializations
	Performance Aspect
	Performance Scope
	Validation
	Selection Help
	Set Structure
	Used Variables
	Value Area

